Musical Isomorphisms and Statistical Manifolds
Let ( M , g , ∇ ( α ) ) be a statistical manifold and g ♭ : T M → T ∗ M be a musical isomorphism from the tangent bundle onto the cotangent bundle. Using the α -vertical and α -horizontal lifts on the tangent bundle of the statistical manifold M , we construct the g - α -vertical and g - α -horizont...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2022-10, Vol.19 (5), Article 225 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
M
,
g
,
∇
(
α
)
)
be a statistical manifold and
g
♭
:
T
M
→
T
∗
M
be a musical isomorphism from the tangent bundle onto the cotangent bundle. Using the
α
-vertical and
α
-horizontal lifts on the tangent bundle of the statistical manifold
M
, we construct the
g
-
α
-vertical and
g
-
α
-horizontal lifts on the cotangent bundle with the aid of the musical isomorphism
g
♭
. We prove that the Lie bracket of the
α
-horizontal lifts of vector fields to tangent and cotangent bundles is
g
♭
-related if and only if the
α
-curvature tensor is an even function of
α
. Also, we get statistical structures via the musical isomorphism in the cotangent bundle. Finally, we give the notion of the Schouten–Van Kampen
(
α
)
-connection associated with the statistical connection on the cotangent bundles. Furthermore, we provide some non-trivial examples as applications to this study. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-022-02141-z |