Musical Isomorphisms and Statistical Manifolds

Let ( M , g , ∇ ( α ) ) be a statistical manifold and g ♭ : T M → T ∗ M be a musical isomorphism from the tangent bundle onto the cotangent bundle. Using the α -vertical and α -horizontal lifts on the tangent bundle of the statistical manifold M , we construct the g - α -vertical and g - α -horizont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2022-10, Vol.19 (5), Article 225
Hauptverfasser: Peyghan, Esmaeil, Nourmohammadifar, Leila, Uddin, Siraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( M , g , ∇ ( α ) ) be a statistical manifold and g ♭ : T M → T ∗ M be a musical isomorphism from the tangent bundle onto the cotangent bundle. Using the α -vertical and α -horizontal lifts on the tangent bundle of the statistical manifold M , we construct the g - α -vertical and g - α -horizontal lifts on the cotangent bundle with the aid of the musical isomorphism g ♭ . We prove that the Lie bracket of the α -horizontal lifts of vector fields to tangent and cotangent bundles is g ♭ -related if and only if the α -curvature tensor is an even function of α . Also, we get statistical structures via the musical isomorphism in the cotangent bundle. Finally, we give the notion of the Schouten–Van Kampen ( α ) -connection associated with the statistical connection on the cotangent bundles. Furthermore, we provide some non-trivial examples as applications to this study.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-022-02141-z