Increasing the replicability for linear models via adaptive significance levels
We put forward an adaptive α (type I error) that decreases as the information grows for hypothesis tests comparing nested linear models. A less elaborate adaptation was presented in Pérez and Pericchi (Stat Probab Lett 85:20–24, 2014) for general i.i.d. models. The calibration proposed in this paper...
Gespeichert in:
Veröffentlicht in: | Test (Madrid, Spain) Spain), 2022-09, Vol.31 (3), p.771-789 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We put forward an adaptive
α
(type I error) that decreases as the information grows for hypothesis tests comparing nested linear models. A less elaborate adaptation was presented in Pérez and Pericchi (Stat Probab Lett 85:20–24, 2014) for general i.i.d. models. The calibration proposed in this paper may be interpreted as a Bayes–non-Bayes compromise, of a simple translation of a Bayes factor on frequentist terms that leads to statistical consistency, and most importantly, it is a step toward statistics that promotes replicable scientific findings. |
---|---|
ISSN: | 1133-0686 1863-8260 |
DOI: | 10.1007/s11749-022-00803-4 |