Evolution of warm season intense rainfall in Yaan against a cold-anomaly background

This study investigates the rainfall characteristics during intense rainfall over Yaan against a cold-anomaly background, aiming to refine the understanding of different kinds of rainfall events across complex terrain. Hourly rain gauge records, ERA5 reanalysis data and the black body temperature of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2022-10, Vol.59 (7-8), p.2169-2180
Hauptverfasser: Hu, Xuelin, Yuan, Weihua, Yu, Rucong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigates the rainfall characteristics during intense rainfall over Yaan against a cold-anomaly background, aiming to refine the understanding of different kinds of rainfall events across complex terrain. Hourly rain gauge records, ERA5 reanalysis data and the black body temperature of cloud tops derived from FY-2E were used. The results show that against a cold-anomaly background, the regional rainfall events (RREs) in Yaan exhibit west-to-east propagation, which is different from the north-to-south evolution of warm RREs. The middle and upper troposphere is dominated by a negative geopotential height anomaly corresponding to the cold anomaly. The cyclonic circulation at the higher level associated with the negative geopotential height anomaly bends the high-level jet to the south, forming a divergent zone over the Tibetan Plateau (TP) and guiding mid-level systems to move eastward. The cyclonic circulation at the mid-level produces a wind shear zone over the TP, generating anomalous vorticity that continuously moves eastward and develops to influence the rainfall over Yaan. The cold Yaan RREs are closely related to the TP low-pressure systems (both vortex and shearline). The anomalous vorticity over the TP can influence the local vortex over the eastern periphery of the TP at a distance mainly by the horizontal advection of anomalous vorticity by the mean flow and then enhance the local vortex mainly by anomalous convergence when it moves near Yaan.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-022-06202-7