Novel ultrasonic atomization approach for sunflower oil in water emulsion
The present work describes ultrasonic atomization as a novel approach for the synthesis of oil-in-water emulsion. The mechanism of droplet formation is explained using capillary wave hypothesis and cavitation hypothesis. The effects of oil concentration, surfactant concentration, atomization frequen...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present work describes ultrasonic atomization as a novel approach for the synthesis of oil-in-water emulsion. The mechanism of droplet formation is explained using capillary wave hypothesis and cavitation hypothesis. The effects of oil concentration, surfactant concentration, atomization frequency and flowrate to atomizer on particle size are investigated using particle size and optical microscopy analysis. With increase in oil concentration from 1 to 20%, the thickness of liquid film increases which leads to increase in particle size. The increase in surfactant concentration from 0.5 - 1% contributed to decrease the particle size, however further increase in surfactant concentration resulted in agglomeration of particles. The increase in atomization frequency from 20 - 130 kHz is beneficial in decreasing particle size from 65 - 17 µm. The increase in flowrate to atomizer increases the particle size. Microscopic observations for all parameters are in agreement with the results obtained from particle size analysis. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0099437 |