Joint extreme values of L-functions

We consider L -functions L 1 , … , L k from the Selberg class which have polynomial Euler product and satisfy Selberg’s orthonormality condition. We show that on every vertical line s = σ + i t with σ ∈ ( 1 / 2 , 1 ) , these L -functions simultaneously take large values of size exp c ( log t ) 1 - σ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-10, Vol.302 (2), p.1177-1190
Hauptverfasser: Mahatab, Kamalakshya, Pańkowski, Łukasz, Vatwani, Akshaa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider L -functions L 1 , … , L k from the Selberg class which have polynomial Euler product and satisfy Selberg’s orthonormality condition. We show that on every vertical line s = σ + i t with σ ∈ ( 1 / 2 , 1 ) , these L -functions simultaneously take large values of size exp c ( log t ) 1 - σ log log t inside a small neighborhood. Our method extends to σ = 1 unconditionally, and to σ = 1 / 2 on the generalized Riemann hypothesis. We also obtain similar joint omega results for arguments of the given L -functions.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-022-03089-2