Joint extreme values of L-functions
We consider L -functions L 1 , … , L k from the Selberg class which have polynomial Euler product and satisfy Selberg’s orthonormality condition. We show that on every vertical line s = σ + i t with σ ∈ ( 1 / 2 , 1 ) , these L -functions simultaneously take large values of size exp c ( log t ) 1 - σ...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2022-10, Vol.302 (2), p.1177-1190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider
L
-functions
L
1
,
…
,
L
k
from the Selberg class which have polynomial Euler product and satisfy Selberg’s orthonormality condition. We show that on every vertical line
s
=
σ
+
i
t
with
σ
∈
(
1
/
2
,
1
)
, these
L
-functions simultaneously take large values of size
exp
c
(
log
t
)
1
-
σ
log
log
t
inside a small neighborhood. Our method extends to
σ
=
1
unconditionally, and to
σ
=
1
/
2
on the generalized Riemann hypothesis. We also obtain similar joint omega results for arguments of the given
L
-functions. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-022-03089-2 |