Long-lived Bell states in an array of optical clock qubits

The generation of long-lived entanglement in optical atomic clocks is one of the main goals of quantum metrology. Arrays of neutral atoms, where Rydberg-based interactions may generate entanglement between individually controlled and resolved atoms, constitute a promising quantum platform to achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2022-09, Vol.18 (9), p.1067-1073
Hauptverfasser: Schine, Nathan, Young, Aaron W., Eckner, William J., Martin, Michael J., Kaufman, Adam M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generation of long-lived entanglement in optical atomic clocks is one of the main goals of quantum metrology. Arrays of neutral atoms, where Rydberg-based interactions may generate entanglement between individually controlled and resolved atoms, constitute a promising quantum platform to achieve this. Here we leverage the programmable state preparation afforded by optical tweezers and the efficient strong confinement of a three-dimensional optical lattice to prepare an ensemble of strontium-atom pairs in their motional ground state. We engineer global single-qubit gates on the optical clock transition and two-qubit entangling gates via adiabatic Rydberg dressing, enabling the generation of Bell states with a state-preparation-and-measurement-corrected fidelity of 92.8(2.0)% (87.1(1.6)% without state-preparation-and-measurement correction). For use in quantum metrology, it is furthermore critical that the resulting entanglement be long lived; we find that the coherence of the Bell state has a lifetime of 4.2(6) s via parity correlations and simultaneous comparisons between entangled and unentangled ensembles. Such long-lived Bell states can be useful for enhancing metrological stability and bandwidth. In the future, atomic rearrangement will enable the implementation of many-qubit gates and cluster state generation, as well as explorations of the transverse field Ising model. Long-lived entanglement is a key resource for quantum metrology with optical clocks. Rydberg-based entangling gates within arrays of neutral atoms enable the generation of clock-transition Bell states with high fidelity and long coherence times.
ISSN:1745-2473
1745-2481
DOI:10.1038/s41567-022-01678-w