On the Sparse DAG Structure Learning Based on Adaptive Lasso

Learning the underlying Bayesian Networks (BNs), represented by directed acyclic graphs (DAGs), of the concerned events from purely-observational data is a crucial part of evidential reasoning. This task remains challenging due to the large and discrete search space. A recent flurry of developments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Xu, Danru, Gao, Erdun, Huang, Wei, Wang, Menghan, Song, Andy, Gong, Mingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Learning the underlying Bayesian Networks (BNs), represented by directed acyclic graphs (DAGs), of the concerned events from purely-observational data is a crucial part of evidential reasoning. This task remains challenging due to the large and discrete search space. A recent flurry of developments followed NOTEARS[1] recast this combinatorial problem into a continuous optimization problem by leveraging an algebraic equality characterization of acyclicity. However, the continuous optimization methods suffer from obtaining non-spare graphs after the numerical optimization, which leads to the inflexibility to rule out the potentially cycle-inducing edges or false discovery edges with small values. To address this issue, in this paper, we develop a completely data-driven DAG structure learning method without a predefined value to post-threshold small values. We name our method NOTEARS with adaptive Lasso (NOTEARS-AL), which is achieved by applying the adaptive penalty method to ensure the sparsity of the estimated DAG. Moreover, we show that NOTEARS-AL also inherits the oracle properties under some specific conditions. Extensive experiments on both synthetic and a real-world dataset demonstrate that our method consistently outperforms NOTEARS.
ISSN:2331-8422