Assessing Ground Vibration Caused by Rock Blasting in Surface Mines Using Machine-Learning Approaches: A Comparison of CART, SVR and MARS

Ground vibration induced by rock blasting is an unavoidable effect that may generate severe damages to structures and living communities. Peak particle velocity (PPV) is the key predictor for ground vibration. This study aims to develop a model to predict PPV in opencast mines. Two machine-learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-09, Vol.14 (17), p.11060
Hauptverfasser: Komadja, Gbétoglo Charles, Rana, Aditya, Glodji, Luc Adissin, Anye, Vitalis, Jadaun, Gajendra, Onwualu, Peter Azikiwe, Sawmliana, Chhangte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ground vibration induced by rock blasting is an unavoidable effect that may generate severe damages to structures and living communities. Peak particle velocity (PPV) is the key predictor for ground vibration. This study aims to develop a model to predict PPV in opencast mines. Two machine-learning techniques, including multivariate adaptive regression splines (MARS) and classification and regression tree (CART), which are easy to implement by field engineers, were investigated. The models were developed using a record of 1001 real blast-induced ground vibrations, with ten (10) corresponding blasting parameters from 34 opencast mines/quarries from India and Benin. The suitability of one technique over the other was tested by comparing the outcomes with the support vector regression (SVR) algorithm, multiple linear regression, and different empirical predictors using a Taylor diagram. The results showed that the MARS model outperformed other models in this study with lower error (RMSE = 0.227) and R2 of 0.951, followed by SVR (R2 = 0.87), CART (R2 = 0.74) and empirical predictors. Based on the large-scale cases and input variables involved, the developed models should lead to better representative models of high generalization ability. The proposed MARS model can easily be implemented by field engineers for the prediction of blasting vibration with reasonable accuracy.
ISSN:2071-1050
2071-1050
DOI:10.3390/su141711060