Comparison of the Calibrated Objective Functions for Low Flow Simulation in a Semi-Arid Catchment
Low flow simulation by hydrological models is a common solution in water research and application. However, knowledge about the influence of the objective functions is limited in relatively arid regions. This study aims to increase insight into the difference between the calibrated objective functio...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-09, Vol.14 (17), p.2591 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 2591 |
container_title | Water (Basel) |
container_volume | 14 |
creator | Yang, Xue Yu, Chengxi Li, Xiaoli Luo, Jungang Xie, Jiancang Zhou, Bin |
description | Low flow simulation by hydrological models is a common solution in water research and application. However, knowledge about the influence of the objective functions is limited in relatively arid regions. This study aims to increase insight into the difference between the calibrated objective functions by evaluating eight objectives in three different classes (single objectives: KGE(log(Q)) and KGE(1/Q); multi objectives: KGE(Q)+KGE(log(Q)), KGE(Q)+KGE(1/Q), KGE(Qsort)+KGE(log(Qsort)) and KGE(Qsort)+KGE(1/Qsort); Split objectives: split KGE(Q) and split (KGE(Q)+KGE(1/Q))) in Bahe, a semi-arid basin in China. The calibrated model is Xin An Jiang, and the evaluation is repeated under varied climates. The results show a clear difference between objective functions for low flows, and the mean of KGE and logarithmic transformed-based KGE in time series (KGE(Q)+KGE(log(Q))) presents the best compromise between the estimation for low flows and general simulation. In addition, the applications of the inverse transformed-based KGE (KGE(1/Q)) and the Flow Duration Curve-based series (Qsort) in objectives are not suggested. |
doi_str_mv | 10.3390/w14172591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2711511635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2711511635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-bd9ccd4cda1097f0b2e702e17d0c1c0b99be4e8a5123cc371fb20a2ddb77d8113</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqT34DwKePKzmJVmzOZbFqlDooXpe8rU0ZXdTk6zFf--WivgO8wZmmIFB6BbIA2OSPB6Bg6ClhAs0o0SwgnMOl__4NVqktCfTcVlVJZkhVYf-oKJPYcChxXnncK06r6PKzuKN3juT_ZfDq3GYSBgSbkPE63DEq26Cre_HTp0E7Aes8Nb1vlhGb6eUbHa9G_INumpVl9zi98_Rx-r5vX4t1puXt3q5Lgwrq1xoK42x3FgFRIqWaOoEoQ6EJQYM0VJqx12lSqDMGCag1ZQoaq0WwlYAbI7uzrmHGD5Hl3KzD2McpsqGCoAS4ImVk-v-7DIxpBRd2xyi71X8boA0pxGbvxHZDx8IY8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711511635</pqid></control><display><type>article</type><title>Comparison of the Calibrated Objective Functions for Low Flow Simulation in a Semi-Arid Catchment</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Yang, Xue ; Yu, Chengxi ; Li, Xiaoli ; Luo, Jungang ; Xie, Jiancang ; Zhou, Bin</creator><creatorcontrib>Yang, Xue ; Yu, Chengxi ; Li, Xiaoli ; Luo, Jungang ; Xie, Jiancang ; Zhou, Bin</creatorcontrib><description>Low flow simulation by hydrological models is a common solution in water research and application. However, knowledge about the influence of the objective functions is limited in relatively arid regions. This study aims to increase insight into the difference between the calibrated objective functions by evaluating eight objectives in three different classes (single objectives: KGE(log(Q)) and KGE(1/Q); multi objectives: KGE(Q)+KGE(log(Q)), KGE(Q)+KGE(1/Q), KGE(Qsort)+KGE(log(Qsort)) and KGE(Qsort)+KGE(1/Qsort); Split objectives: split KGE(Q) and split (KGE(Q)+KGE(1/Q))) in Bahe, a semi-arid basin in China. The calibrated model is Xin An Jiang, and the evaluation is repeated under varied climates. The results show a clear difference between objective functions for low flows, and the mean of KGE and logarithmic transformed-based KGE in time series (KGE(Q)+KGE(log(Q))) presents the best compromise between the estimation for low flows and general simulation. In addition, the applications of the inverse transformed-based KGE (KGE(1/Q)) and the Flow Duration Curve-based series (Qsort) in objectives are not suggested.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w14172591</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Arid zones ; Calibration ; Climate ; Climate change ; Flow duration ; Flow simulation ; Hydrologic models ; Hydrology ; Low flow ; Precipitation ; Simulation ; Time series</subject><ispartof>Water (Basel), 2022-09, Vol.14 (17), p.2591</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-bd9ccd4cda1097f0b2e702e17d0c1c0b99be4e8a5123cc371fb20a2ddb77d8113</citedby><cites>FETCH-LOGICAL-c358t-bd9ccd4cda1097f0b2e702e17d0c1c0b99be4e8a5123cc371fb20a2ddb77d8113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Yu, Chengxi</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Luo, Jungang</creatorcontrib><creatorcontrib>Xie, Jiancang</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><title>Comparison of the Calibrated Objective Functions for Low Flow Simulation in a Semi-Arid Catchment</title><title>Water (Basel)</title><description>Low flow simulation by hydrological models is a common solution in water research and application. However, knowledge about the influence of the objective functions is limited in relatively arid regions. This study aims to increase insight into the difference between the calibrated objective functions by evaluating eight objectives in three different classes (single objectives: KGE(log(Q)) and KGE(1/Q); multi objectives: KGE(Q)+KGE(log(Q)), KGE(Q)+KGE(1/Q), KGE(Qsort)+KGE(log(Qsort)) and KGE(Qsort)+KGE(1/Qsort); Split objectives: split KGE(Q) and split (KGE(Q)+KGE(1/Q))) in Bahe, a semi-arid basin in China. The calibrated model is Xin An Jiang, and the evaluation is repeated under varied climates. The results show a clear difference between objective functions for low flows, and the mean of KGE and logarithmic transformed-based KGE in time series (KGE(Q)+KGE(log(Q))) presents the best compromise between the estimation for low flows and general simulation. In addition, the applications of the inverse transformed-based KGE (KGE(1/Q)) and the Flow Duration Curve-based series (Qsort) in objectives are not suggested.</description><subject>Algorithms</subject><subject>Arid zones</subject><subject>Calibration</subject><subject>Climate</subject><subject>Climate change</subject><subject>Flow duration</subject><subject>Flow simulation</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Low flow</subject><subject>Precipitation</subject><subject>Simulation</subject><subject>Time series</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUE1LAzEUDKJgqT34DwKePKzmJVmzOZbFqlDooXpe8rU0ZXdTk6zFf--WivgO8wZmmIFB6BbIA2OSPB6Bg6ClhAs0o0SwgnMOl__4NVqktCfTcVlVJZkhVYf-oKJPYcChxXnncK06r6PKzuKN3juT_ZfDq3GYSBgSbkPE63DEq26Cre_HTp0E7Aes8Nb1vlhGb6eUbHa9G_INumpVl9zi98_Rx-r5vX4t1puXt3q5Lgwrq1xoK42x3FgFRIqWaOoEoQ6EJQYM0VJqx12lSqDMGCag1ZQoaq0WwlYAbI7uzrmHGD5Hl3KzD2McpsqGCoAS4ImVk-v-7DIxpBRd2xyi71X8boA0pxGbvxHZDx8IY8s</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Yang, Xue</creator><creator>Yu, Chengxi</creator><creator>Li, Xiaoli</creator><creator>Luo, Jungang</creator><creator>Xie, Jiancang</creator><creator>Zhou, Bin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220901</creationdate><title>Comparison of the Calibrated Objective Functions for Low Flow Simulation in a Semi-Arid Catchment</title><author>Yang, Xue ; Yu, Chengxi ; Li, Xiaoli ; Luo, Jungang ; Xie, Jiancang ; Zhou, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-bd9ccd4cda1097f0b2e702e17d0c1c0b99be4e8a5123cc371fb20a2ddb77d8113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Arid zones</topic><topic>Calibration</topic><topic>Climate</topic><topic>Climate change</topic><topic>Flow duration</topic><topic>Flow simulation</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Low flow</topic><topic>Precipitation</topic><topic>Simulation</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xue</creatorcontrib><creatorcontrib>Yu, Chengxi</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Luo, Jungang</creatorcontrib><creatorcontrib>Xie, Jiancang</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xue</au><au>Yu, Chengxi</au><au>Li, Xiaoli</au><au>Luo, Jungang</au><au>Xie, Jiancang</au><au>Zhou, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the Calibrated Objective Functions for Low Flow Simulation in a Semi-Arid Catchment</atitle><jtitle>Water (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>14</volume><issue>17</issue><spage>2591</spage><pages>2591-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Low flow simulation by hydrological models is a common solution in water research and application. However, knowledge about the influence of the objective functions is limited in relatively arid regions. This study aims to increase insight into the difference between the calibrated objective functions by evaluating eight objectives in three different classes (single objectives: KGE(log(Q)) and KGE(1/Q); multi objectives: KGE(Q)+KGE(log(Q)), KGE(Q)+KGE(1/Q), KGE(Qsort)+KGE(log(Qsort)) and KGE(Qsort)+KGE(1/Qsort); Split objectives: split KGE(Q) and split (KGE(Q)+KGE(1/Q))) in Bahe, a semi-arid basin in China. The calibrated model is Xin An Jiang, and the evaluation is repeated under varied climates. The results show a clear difference between objective functions for low flows, and the mean of KGE and logarithmic transformed-based KGE in time series (KGE(Q)+KGE(log(Q))) presents the best compromise between the estimation for low flows and general simulation. In addition, the applications of the inverse transformed-based KGE (KGE(1/Q)) and the Flow Duration Curve-based series (Qsort) in objectives are not suggested.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w14172591</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2022-09, Vol.14 (17), p.2591 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2711511635 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Arid zones Calibration Climate Climate change Flow duration Flow simulation Hydrologic models Hydrology Low flow Precipitation Simulation Time series |
title | Comparison of the Calibrated Objective Functions for Low Flow Simulation in a Semi-Arid Catchment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20Calibrated%20Objective%20Functions%20for%20Low%20Flow%20Simulation%20in%20a%20Semi-Arid%20Catchment&rft.jtitle=Water%20(Basel)&rft.au=Yang,%20Xue&rft.date=2022-09-01&rft.volume=14&rft.issue=17&rft.spage=2591&rft.pages=2591-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w14172591&rft_dat=%3Cproquest_cross%3E2711511635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711511635&rft_id=info:pmid/&rfr_iscdi=true |