Comparison of the Calibrated Objective Functions for Low Flow Simulation in a Semi-Arid Catchment
Low flow simulation by hydrological models is a common solution in water research and application. However, knowledge about the influence of the objective functions is limited in relatively arid regions. This study aims to increase insight into the difference between the calibrated objective functio...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-09, Vol.14 (17), p.2591 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low flow simulation by hydrological models is a common solution in water research and application. However, knowledge about the influence of the objective functions is limited in relatively arid regions. This study aims to increase insight into the difference between the calibrated objective functions by evaluating eight objectives in three different classes (single objectives: KGE(log(Q)) and KGE(1/Q); multi objectives: KGE(Q)+KGE(log(Q)), KGE(Q)+KGE(1/Q), KGE(Qsort)+KGE(log(Qsort)) and KGE(Qsort)+KGE(1/Qsort); Split objectives: split KGE(Q) and split (KGE(Q)+KGE(1/Q))) in Bahe, a semi-arid basin in China. The calibrated model is Xin An Jiang, and the evaluation is repeated under varied climates. The results show a clear difference between objective functions for low flows, and the mean of KGE and logarithmic transformed-based KGE in time series (KGE(Q)+KGE(log(Q))) presents the best compromise between the estimation for low flows and general simulation. In addition, the applications of the inverse transformed-based KGE (KGE(1/Q)) and the Flow Duration Curve-based series (Qsort) in objectives are not suggested. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w14172591 |