Rapid and Accurate Diagnosis of COVID-19 Cases from Chest X-ray Images through an Optimized Features Extraction Approach
The mutants of novel coronavirus (COVID-19 or SARS-Cov-2) are spreading with different variants across the globe, affecting human health and the economy. Rapid detection and providing timely treatment for the COVID-19 infected is the greater challenge. For fast and cost-effective detection, artifici...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-09, Vol.11 (17), p.2682 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mutants of novel coronavirus (COVID-19 or SARS-Cov-2) are spreading with different variants across the globe, affecting human health and the economy. Rapid detection and providing timely treatment for the COVID-19 infected is the greater challenge. For fast and cost-effective detection, artificial intelligence (AI) can perform a key role in enhancing chest X-ray images and classifying them as infected/non-infected. However, AI needs huge datasets to train and detect the COVID-19 infection, which may impact the overall system speed. Therefore, Deep Neural Network (DNN) is preferred over standard AI models to speed up the classification with a set of features from the datasets. Further, to have accurate feature extraction, an algorithm that combines Zernike Moment Feature (ZMF) and Gray Level Co-occurrence Matrix Feature (GF) is proposed and implemented. The proposed algorithm uses 36 Zernike Moment features with variance and contrast textures. This helps to detect the COVID-19 infection accurately. Finally, the Region Blocking (RB) approach with an optimum sub-image size (32 × 32) is employed to improve the processing speed up to 2.6 times per image. The performance of this implementation presents an accuracy (A) of 93.4%, sensitivity (Se) of 72.4%, specificity (Sp) of 95%, precision (Pr) of 74.9% and F1-score (F1) of 72.3%. These metrics illustrate that the proposed model can identify the COVID-19 infection with a lesser dataset and improved accuracy up to 1.3 times than state-of-the-art existing models. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics11172682 |