Modeling Push–Pull Converter for Efficiency Improvement
In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreove...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-09, Vol.11 (17), p.2713 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 2713 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Ivanovic, Zeljko Knezic, Mladen |
description | In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator. |
doi_str_mv | 10.3390/electronics11172713 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2711287730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745603143</galeid><sourcerecordid>A745603143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-b235b46d63fbfcb39cf2296fd37849db095db863f4b181afc99abce3fc9232973</originalsourceid><addsrcrecordid>eNptUMFOwzAMjRBITLAv4FKJc0cSd01znKYBk4bYAc5VkzojU5uMpJu0G__AH_IlBI0DB-yDn2w_P_kRcsPoBEDSO-xQD8E7qyNjTHDB4IyMOBUyl1zy8z_4koxj3NIUkkEFdETkk2-xs26Trffx7evjc73vumzu3QHDgCEzPmQLY6y26PQxW_a74A_YoxuuyYVpuojj33pFXu8XL_PHfPX8sJzPVrmGkg254jBVRdmWYJTRCqQ2nMvStCCqQraKymmrqjQtFKtYY7SUjdIICXDgUsAVuT3dTcrve4xDvfX74JJknV5lvBICaNqanLY2TYe1dcYPodEpW-yt9g6NTf2ZKKYlBVZAIsCJoIOPMaCpd8H2TTjWjNY_vtb_-ArfHFxu5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711287730</pqid></control><display><type>article</type><title>Modeling Push–Pull Converter for Efficiency Improvement</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ivanovic, Zeljko ; Knezic, Mladen</creator><creatorcontrib>Ivanovic, Zeljko ; Knezic, Mladen</creatorcontrib><description>In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11172713</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air-turbines ; Algorithms ; Alternative energy sources ; Design and construction ; Efficiency ; Electric current converters ; Energy ; Measurement techniques ; Permanent magnets ; Recovery time ; Transformers ; Turbogenerators ; Wind turbines ; Wire</subject><ispartof>Electronics (Basel), 2022-09, Vol.11 (17), p.2713</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-b235b46d63fbfcb39cf2296fd37849db095db863f4b181afc99abce3fc9232973</citedby><cites>FETCH-LOGICAL-c361t-b235b46d63fbfcb39cf2296fd37849db095db863f4b181afc99abce3fc9232973</cites><orcidid>0000-0002-8215-9490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ivanovic, Zeljko</creatorcontrib><creatorcontrib>Knezic, Mladen</creatorcontrib><title>Modeling Push–Pull Converter for Efficiency Improvement</title><title>Electronics (Basel)</title><description>In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator.</description><subject>Air-turbines</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Design and construction</subject><subject>Efficiency</subject><subject>Electric current converters</subject><subject>Energy</subject><subject>Measurement techniques</subject><subject>Permanent magnets</subject><subject>Recovery time</subject><subject>Transformers</subject><subject>Turbogenerators</subject><subject>Wind turbines</subject><subject>Wire</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMFOwzAMjRBITLAv4FKJc0cSd01znKYBk4bYAc5VkzojU5uMpJu0G__AH_IlBI0DB-yDn2w_P_kRcsPoBEDSO-xQD8E7qyNjTHDB4IyMOBUyl1zy8z_4koxj3NIUkkEFdETkk2-xs26Trffx7evjc73vumzu3QHDgCEzPmQLY6y26PQxW_a74A_YoxuuyYVpuojj33pFXu8XL_PHfPX8sJzPVrmGkg254jBVRdmWYJTRCqQ2nMvStCCqQraKymmrqjQtFKtYY7SUjdIICXDgUsAVuT3dTcrve4xDvfX74JJknV5lvBICaNqanLY2TYe1dcYPodEpW-yt9g6NTf2ZKKYlBVZAIsCJoIOPMaCpd8H2TTjWjNY_vtb_-ArfHFxu5g</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ivanovic, Zeljko</creator><creator>Knezic, Mladen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8215-9490</orcidid></search><sort><creationdate>20220901</creationdate><title>Modeling Push–Pull Converter for Efficiency Improvement</title><author>Ivanovic, Zeljko ; Knezic, Mladen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-b235b46d63fbfcb39cf2296fd37849db095db863f4b181afc99abce3fc9232973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air-turbines</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Design and construction</topic><topic>Efficiency</topic><topic>Electric current converters</topic><topic>Energy</topic><topic>Measurement techniques</topic><topic>Permanent magnets</topic><topic>Recovery time</topic><topic>Transformers</topic><topic>Turbogenerators</topic><topic>Wind turbines</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanovic, Zeljko</creatorcontrib><creatorcontrib>Knezic, Mladen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanovic, Zeljko</au><au>Knezic, Mladen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Push–Pull Converter for Efficiency Improvement</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>11</volume><issue>17</issue><spage>2713</spage><pages>2713-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11172713</doi><orcidid>https://orcid.org/0000-0002-8215-9490</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-09, Vol.11 (17), p.2713 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2711287730 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Air-turbines Algorithms Alternative energy sources Design and construction Efficiency Electric current converters Energy Measurement techniques Permanent magnets Recovery time Transformers Turbogenerators Wind turbines Wire |
title | Modeling Push–Pull Converter for Efficiency Improvement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Push%E2%80%93Pull%20Converter%20for%20Efficiency%20Improvement&rft.jtitle=Electronics%20(Basel)&rft.au=Ivanovic,%20Zeljko&rft.date=2022-09-01&rft.volume=11&rft.issue=17&rft.spage=2713&rft.pages=2713-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11172713&rft_dat=%3Cgale_proqu%3EA745603143%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711287730&rft_id=info:pmid/&rft_galeid=A745603143&rfr_iscdi=true |