Modeling Push–Pull Converter for Efficiency Improvement

In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-09, Vol.11 (17), p.2713
Hauptverfasser: Ivanovic, Zeljko, Knezic, Mladen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 2713
container_title Electronics (Basel)
container_volume 11
creator Ivanovic, Zeljko
Knezic, Mladen
description In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator.
doi_str_mv 10.3390/electronics11172713
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2711287730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745603143</galeid><sourcerecordid>A745603143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-b235b46d63fbfcb39cf2296fd37849db095db863f4b181afc99abce3fc9232973</originalsourceid><addsrcrecordid>eNptUMFOwzAMjRBITLAv4FKJc0cSd01znKYBk4bYAc5VkzojU5uMpJu0G__AH_IlBI0DB-yDn2w_P_kRcsPoBEDSO-xQD8E7qyNjTHDB4IyMOBUyl1zy8z_4koxj3NIUkkEFdETkk2-xs26Trffx7evjc73vumzu3QHDgCEzPmQLY6y26PQxW_a74A_YoxuuyYVpuojj33pFXu8XL_PHfPX8sJzPVrmGkg254jBVRdmWYJTRCqQ2nMvStCCqQraKymmrqjQtFKtYY7SUjdIICXDgUsAVuT3dTcrve4xDvfX74JJknV5lvBICaNqanLY2TYe1dcYPodEpW-yt9g6NTf2ZKKYlBVZAIsCJoIOPMaCpd8H2TTjWjNY_vtb_-ArfHFxu5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711287730</pqid></control><display><type>article</type><title>Modeling Push–Pull Converter for Efficiency Improvement</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ivanovic, Zeljko ; Knezic, Mladen</creator><creatorcontrib>Ivanovic, Zeljko ; Knezic, Mladen</creatorcontrib><description>In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11172713</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air-turbines ; Algorithms ; Alternative energy sources ; Design and construction ; Efficiency ; Electric current converters ; Energy ; Measurement techniques ; Permanent magnets ; Recovery time ; Transformers ; Turbogenerators ; Wind turbines ; Wire</subject><ispartof>Electronics (Basel), 2022-09, Vol.11 (17), p.2713</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-b235b46d63fbfcb39cf2296fd37849db095db863f4b181afc99abce3fc9232973</citedby><cites>FETCH-LOGICAL-c361t-b235b46d63fbfcb39cf2296fd37849db095db863f4b181afc99abce3fc9232973</cites><orcidid>0000-0002-8215-9490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ivanovic, Zeljko</creatorcontrib><creatorcontrib>Knezic, Mladen</creatorcontrib><title>Modeling Push–Pull Converter for Efficiency Improvement</title><title>Electronics (Basel)</title><description>In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator.</description><subject>Air-turbines</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Design and construction</subject><subject>Efficiency</subject><subject>Electric current converters</subject><subject>Energy</subject><subject>Measurement techniques</subject><subject>Permanent magnets</subject><subject>Recovery time</subject><subject>Transformers</subject><subject>Turbogenerators</subject><subject>Wind turbines</subject><subject>Wire</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMFOwzAMjRBITLAv4FKJc0cSd01znKYBk4bYAc5VkzojU5uMpJu0G__AH_IlBI0DB-yDn2w_P_kRcsPoBEDSO-xQD8E7qyNjTHDB4IyMOBUyl1zy8z_4koxj3NIUkkEFdETkk2-xs26Trffx7evjc73vumzu3QHDgCEzPmQLY6y26PQxW_a74A_YoxuuyYVpuojj33pFXu8XL_PHfPX8sJzPVrmGkg254jBVRdmWYJTRCqQ2nMvStCCqQraKymmrqjQtFKtYY7SUjdIICXDgUsAVuT3dTcrve4xDvfX74JJknV5lvBICaNqanLY2TYe1dcYPodEpW-yt9g6NTf2ZKKYlBVZAIsCJoIOPMaCpd8H2TTjWjNY_vtb_-ArfHFxu5g</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ivanovic, Zeljko</creator><creator>Knezic, Mladen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8215-9490</orcidid></search><sort><creationdate>20220901</creationdate><title>Modeling Push–Pull Converter for Efficiency Improvement</title><author>Ivanovic, Zeljko ; Knezic, Mladen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-b235b46d63fbfcb39cf2296fd37849db095db863f4b181afc99abce3fc9232973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air-turbines</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Design and construction</topic><topic>Efficiency</topic><topic>Electric current converters</topic><topic>Energy</topic><topic>Measurement techniques</topic><topic>Permanent magnets</topic><topic>Recovery time</topic><topic>Transformers</topic><topic>Turbogenerators</topic><topic>Wind turbines</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanovic, Zeljko</creatorcontrib><creatorcontrib>Knezic, Mladen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanovic, Zeljko</au><au>Knezic, Mladen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Push–Pull Converter for Efficiency Improvement</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>11</volume><issue>17</issue><spage>2713</spage><pages>2713-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11172713</doi><orcidid>https://orcid.org/0000-0002-8215-9490</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-09, Vol.11 (17), p.2713
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2711287730
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Air-turbines
Algorithms
Alternative energy sources
Design and construction
Efficiency
Electric current converters
Energy
Measurement techniques
Permanent magnets
Recovery time
Transformers
Turbogenerators
Wind turbines
Wire
title Modeling Push–Pull Converter for Efficiency Improvement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Push%E2%80%93Pull%20Converter%20for%20Efficiency%20Improvement&rft.jtitle=Electronics%20(Basel)&rft.au=Ivanovic,%20Zeljko&rft.date=2022-09-01&rft.volume=11&rft.issue=17&rft.spage=2713&rft.pages=2713-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11172713&rft_dat=%3Cgale_proqu%3EA745603143%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711287730&rft_id=info:pmid/&rft_galeid=A745603143&rfr_iscdi=true