Modeling Push–Pull Converter for Efficiency Improvement
In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreove...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-09, Vol.11 (17), p.2713 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we model and analyze the power losses of push–pull converters. The proposed model considers conduction and dynamic power losses, as well as transformer and inductor losses. Transformer and inductor models include skin and proximity effects, as well as power losses in the core. Moreover, the model includes the diode recovery time losses. We derived the equations for both continuous and discontinuous current operating modes. All model parameters can be obtained either from the datasheets of the used components or by simple measurement techniques. The model is verified experimentally by measuring the efficiency of the 500 W push–pull converter prototype. Simulations and experimental validation are conducted using the assumption that the converter is used in a permanent magnet (PM) wind turbine generator. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics11172713 |