Rigid and Schurian modules over cluster-tilted algebras of tame type

We give an example of a cluster-tilted algebra Λ with quiver Q , such that the associated cluster algebra A ( Q ) has a denominator vector which is not the dimension vector of any indecomposable Λ -module. This answers a question posed by T. Nakanishi. The relevant example is a cluster-tilted algebr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2016-12, Vol.284 (3-4), p.643-682
Hauptverfasser: Marsh, Bethany R., Reiten, Idun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an example of a cluster-tilted algebra Λ with quiver Q , such that the associated cluster algebra A ( Q ) has a denominator vector which is not the dimension vector of any indecomposable Λ -module. This answers a question posed by T. Nakanishi. The relevant example is a cluster-tilted algebra associated with a tame hereditary algebra. We show that for such a cluster-tilted algebra Λ , we can write any denominator vector as a sum of the dimension vectors of at most three indecomposable rigid Λ -modules. In order to do this it is necessary, and of independent interest, to first classify the indecomposable rigid Λ -modules in this case.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-016-1668-z