Rigid and Schurian modules over cluster-tilted algebras of tame type
We give an example of a cluster-tilted algebra Λ with quiver Q , such that the associated cluster algebra A ( Q ) has a denominator vector which is not the dimension vector of any indecomposable Λ -module. This answers a question posed by T. Nakanishi. The relevant example is a cluster-tilted algebr...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2016-12, Vol.284 (3-4), p.643-682 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an example of a cluster-tilted algebra
Λ
with quiver
Q
, such that the associated cluster algebra
A
(
Q
)
has a denominator vector which is not the dimension vector of any indecomposable
Λ
-module. This answers a question posed by T. Nakanishi. The relevant example is a cluster-tilted algebra associated with a tame hereditary algebra. We show that for such a cluster-tilted algebra
Λ
, we can write any denominator vector as a sum of the dimension vectors of at most three indecomposable rigid
Λ
-modules. In order to do this it is necessary, and of independent interest, to first classify the indecomposable rigid
Λ
-modules in this case. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-016-1668-z |