The derivation and visualization of supply network risk profiles from product architectures

The architectures of extended enterprises, including the supply networks that design, develop and support large, complex, engineered products, often reflect system‐level design decisions made very early in the product development process. Design tools used at this, preliminary design, stage focus on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems engineering 2022-09, Vol.25 (5), p.421-442
Hauptverfasser: McKay, Alison, Chittenden, Richard, Hazlehurst, Thomas, Pennington, Alan, Baker, Richard, Waller, Tony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The architectures of extended enterprises, including the supply networks that design, develop and support large, complex, engineered products, often reflect system‐level design decisions made very early in the product development process. Design tools used at this, preliminary design, stage focus on the physics and optimization of product system behaviors. Comparable tools for the consideration of extended enterprise perspectives at this stage are not available despite the costs of non‐quality often attributed to supply chain issues related to early design decisions. This paper introduces an interface to a discrete event simulation package that derives supply chain processes from product system architectures, so enabling the quantification and visualization of supply chain risk in early design decisions. The interface uses input data, in the form of a product architecture and associated make‐buy scenarios, which are available in the preliminary design process. Supplier data needed to drive the simulations is predefined and editable by users. Results from a proof‐of‐concept software prototype demonstrate the feasibility of generating enterprise architectures from product architectures and coupling these with a systems design vee model to create executable simulation models that can be used to identify, quantify and visualize engineering supply chain process operations and consequential risks.
ISSN:1098-1241
1520-6858
DOI:10.1002/sys.21622