Dummy and effects coding variables in discrete choice analysis

Discrete choice models typically incorporate product/service attributes, many of which are categorical. Researchers code these attributes in one of two ways: dummy coding and effects coding. Whereas previous studies favor effects coding citing that it resolves confounding between attributes, our ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of agricultural economics 2022-10, Vol.104 (5), p.1770-1788
Hauptverfasser: Hu, Wuyang, Sun, Shan, Penn, Jerrod, Qing, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1788
container_issue 5
container_start_page 1770
container_title American journal of agricultural economics
container_volume 104
creator Hu, Wuyang
Sun, Shan
Penn, Jerrod
Qing, Ping
description Discrete choice models typically incorporate product/service attributes, many of which are categorical. Researchers code these attributes in one of two ways: dummy coding and effects coding. Whereas previous studies favor effects coding citing that it resolves confounding between attributes, our analysis demonstrates that such confounding does not exist in either method, even when a choice model contains alternative specific constants. Furthermore, we show that because of the lack of understanding of the equivalence between the two coding methods, a sizeable number of previously published articles have misinterpreted effects coded results. The misinterpretation generates conflicting preference ordering and renders t‐statistics, marginal willingness to pay, as well as consumer surplus/compensating variation estimates invalid. We show that severe misinterpretation occurs for any categorical attribute that contains more than two discrete levels. The frequency of two‐level attributes used in discrete choice analyses may have led some past studies to overlook this error. Given its equivalence and lower likelihood of misinterpretation, we recommend dummy coding.
doi_str_mv 10.1111/ajae.12311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709841763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709841763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3911-f3c7d998a1c512cdd8a0733782a24b7ab551439826a0202ede46a54500b457a83</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqxV8Q8CZszSTZTXIRitYvCl70HLJJVlO2uzVplf33pq7gzbkMAw8vw4vQOZAZ5LkyK-NnQBnAAZoAr0QhqagO0YQQQgtFFD1GJymt8klAyQm6vt2t1wM2ncO-abzdJmx7F7o3_GliMHXrEw4ddiHZ6Lce2_c-WJ-9aYcU0ik6akyb_NnvnqLXu8XLzUOxfL5_vJkvC8sUQNEwK5xS0oAtgVrnpCGCMSGpobwWpi5L4ExJWhlCCfXO88qUvCSk5qUwkk3RxZi7if3HzqetXvW7mJ9ImgqiJAdRsawuR2Vjn1L0jd7EsDZx0ED0vh-970f_9JMxHrG3fRfSH82NCZ4xzQRG8hVaP_wTpudP88UY-w0PD2_z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709841763</pqid></control><display><type>article</type><title>Dummy and effects coding variables in discrete choice analysis</title><source>Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Hu, Wuyang ; Sun, Shan ; Penn, Jerrod ; Qing, Ping</creator><creatorcontrib>Hu, Wuyang ; Sun, Shan ; Penn, Jerrod ; Qing, Ping</creatorcontrib><description>Discrete choice models typically incorporate product/service attributes, many of which are categorical. Researchers code these attributes in one of two ways: dummy coding and effects coding. Whereas previous studies favor effects coding citing that it resolves confounding between attributes, our analysis demonstrates that such confounding does not exist in either method, even when a choice model contains alternative specific constants. Furthermore, we show that because of the lack of understanding of the equivalence between the two coding methods, a sizeable number of previously published articles have misinterpreted effects coded results. The misinterpretation generates conflicting preference ordering and renders t‐statistics, marginal willingness to pay, as well as consumer surplus/compensating variation estimates invalid. We show that severe misinterpretation occurs for any categorical attribute that contains more than two discrete levels. The frequency of two‐level attributes used in discrete choice analyses may have led some past studies to overlook this error. Given its equivalence and lower likelihood of misinterpretation, we recommend dummy coding.</description><identifier>ISSN: 0002-9092</identifier><identifier>EISSN: 1467-8276</identifier><identifier>DOI: 10.1111/ajae.12311</identifier><language>eng</language><publisher>Boston, USA: Wiley Periodicals, Inc</publisher><subject>Agricultural economics ; Attributes ; Coding ; Decision making models ; Discrete choice ; Dummy ; dummy code ; effects code ; Equivalence ; Error analysis ; Statistical analysis ; welfare measures ; Willingness to pay</subject><ispartof>American journal of agricultural economics, 2022-10, Vol.104 (5), p.1770-1788</ispartof><rights>2022 Agricultural &amp; Applied Economics Association.</rights><rights>2022 Agricultural and Applied Economics Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3911-f3c7d998a1c512cdd8a0733782a24b7ab551439826a0202ede46a54500b457a83</citedby><cites>FETCH-LOGICAL-c3911-f3c7d998a1c512cdd8a0733782a24b7ab551439826a0202ede46a54500b457a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fajae.12311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fajae.12311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Hu, Wuyang</creatorcontrib><creatorcontrib>Sun, Shan</creatorcontrib><creatorcontrib>Penn, Jerrod</creatorcontrib><creatorcontrib>Qing, Ping</creatorcontrib><title>Dummy and effects coding variables in discrete choice analysis</title><title>American journal of agricultural economics</title><description>Discrete choice models typically incorporate product/service attributes, many of which are categorical. Researchers code these attributes in one of two ways: dummy coding and effects coding. Whereas previous studies favor effects coding citing that it resolves confounding between attributes, our analysis demonstrates that such confounding does not exist in either method, even when a choice model contains alternative specific constants. Furthermore, we show that because of the lack of understanding of the equivalence between the two coding methods, a sizeable number of previously published articles have misinterpreted effects coded results. The misinterpretation generates conflicting preference ordering and renders t‐statistics, marginal willingness to pay, as well as consumer surplus/compensating variation estimates invalid. We show that severe misinterpretation occurs for any categorical attribute that contains more than two discrete levels. The frequency of two‐level attributes used in discrete choice analyses may have led some past studies to overlook this error. Given its equivalence and lower likelihood of misinterpretation, we recommend dummy coding.</description><subject>Agricultural economics</subject><subject>Attributes</subject><subject>Coding</subject><subject>Decision making models</subject><subject>Discrete choice</subject><subject>Dummy</subject><subject>dummy code</subject><subject>effects code</subject><subject>Equivalence</subject><subject>Error analysis</subject><subject>Statistical analysis</subject><subject>welfare measures</subject><subject>Willingness to pay</subject><issn>0002-9092</issn><issn>1467-8276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqxV8Q8CZszSTZTXIRitYvCl70HLJJVlO2uzVplf33pq7gzbkMAw8vw4vQOZAZ5LkyK-NnQBnAAZoAr0QhqagO0YQQQgtFFD1GJymt8klAyQm6vt2t1wM2ncO-abzdJmx7F7o3_GliMHXrEw4ddiHZ6Lce2_c-WJ-9aYcU0ik6akyb_NnvnqLXu8XLzUOxfL5_vJkvC8sUQNEwK5xS0oAtgVrnpCGCMSGpobwWpi5L4ExJWhlCCfXO88qUvCSk5qUwkk3RxZi7if3HzqetXvW7mJ9ImgqiJAdRsawuR2Vjn1L0jd7EsDZx0ED0vh-970f_9JMxHrG3fRfSH82NCZ4xzQRG8hVaP_wTpudP88UY-w0PD2_z</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Hu, Wuyang</creator><creator>Sun, Shan</creator><creator>Penn, Jerrod</creator><creator>Qing, Ping</creator><general>Wiley Periodicals, Inc</general><general>Blackwell Publishing Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>SOI</scope></search><sort><creationdate>202210</creationdate><title>Dummy and effects coding variables in discrete choice analysis</title><author>Hu, Wuyang ; Sun, Shan ; Penn, Jerrod ; Qing, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3911-f3c7d998a1c512cdd8a0733782a24b7ab551439826a0202ede46a54500b457a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural economics</topic><topic>Attributes</topic><topic>Coding</topic><topic>Decision making models</topic><topic>Discrete choice</topic><topic>Dummy</topic><topic>dummy code</topic><topic>effects code</topic><topic>Equivalence</topic><topic>Error analysis</topic><topic>Statistical analysis</topic><topic>welfare measures</topic><topic>Willingness to pay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Wuyang</creatorcontrib><creatorcontrib>Sun, Shan</creatorcontrib><creatorcontrib>Penn, Jerrod</creatorcontrib><creatorcontrib>Qing, Ping</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Environment Abstracts</collection><jtitle>American journal of agricultural economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Wuyang</au><au>Sun, Shan</au><au>Penn, Jerrod</au><au>Qing, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dummy and effects coding variables in discrete choice analysis</atitle><jtitle>American journal of agricultural economics</jtitle><date>2022-10</date><risdate>2022</risdate><volume>104</volume><issue>5</issue><spage>1770</spage><epage>1788</epage><pages>1770-1788</pages><issn>0002-9092</issn><eissn>1467-8276</eissn><abstract>Discrete choice models typically incorporate product/service attributes, many of which are categorical. Researchers code these attributes in one of two ways: dummy coding and effects coding. Whereas previous studies favor effects coding citing that it resolves confounding between attributes, our analysis demonstrates that such confounding does not exist in either method, even when a choice model contains alternative specific constants. Furthermore, we show that because of the lack of understanding of the equivalence between the two coding methods, a sizeable number of previously published articles have misinterpreted effects coded results. The misinterpretation generates conflicting preference ordering and renders t‐statistics, marginal willingness to pay, as well as consumer surplus/compensating variation estimates invalid. We show that severe misinterpretation occurs for any categorical attribute that contains more than two discrete levels. The frequency of two‐level attributes used in discrete choice analyses may have led some past studies to overlook this error. Given its equivalence and lower likelihood of misinterpretation, we recommend dummy coding.</abstract><cop>Boston, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1111/ajae.12311</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9092
ispartof American journal of agricultural economics, 2022-10, Vol.104 (5), p.1770-1788
issn 0002-9092
1467-8276
language eng
recordid cdi_proquest_journals_2709841763
source Business Source Complete; Access via Wiley Online Library
subjects Agricultural economics
Attributes
Coding
Decision making models
Discrete choice
Dummy
dummy code
effects code
Equivalence
Error analysis
Statistical analysis
welfare measures
Willingness to pay
title Dummy and effects coding variables in discrete choice analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dummy%20and%20effects%20coding%20variables%20in%20discrete%20choice%20analysis&rft.jtitle=American%20journal%20of%20agricultural%20economics&rft.au=Hu,%20Wuyang&rft.date=2022-10&rft.volume=104&rft.issue=5&rft.spage=1770&rft.epage=1788&rft.pages=1770-1788&rft.issn=0002-9092&rft.eissn=1467-8276&rft_id=info:doi/10.1111/ajae.12311&rft_dat=%3Cproquest_cross%3E2709841763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709841763&rft_id=info:pmid/&rfr_iscdi=true