Dummy and effects coding variables in discrete choice analysis

Discrete choice models typically incorporate product/service attributes, many of which are categorical. Researchers code these attributes in one of two ways: dummy coding and effects coding. Whereas previous studies favor effects coding citing that it resolves confounding between attributes, our ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of agricultural economics 2022-10, Vol.104 (5), p.1770-1788
Hauptverfasser: Hu, Wuyang, Sun, Shan, Penn, Jerrod, Qing, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discrete choice models typically incorporate product/service attributes, many of which are categorical. Researchers code these attributes in one of two ways: dummy coding and effects coding. Whereas previous studies favor effects coding citing that it resolves confounding between attributes, our analysis demonstrates that such confounding does not exist in either method, even when a choice model contains alternative specific constants. Furthermore, we show that because of the lack of understanding of the equivalence between the two coding methods, a sizeable number of previously published articles have misinterpreted effects coded results. The misinterpretation generates conflicting preference ordering and renders t‐statistics, marginal willingness to pay, as well as consumer surplus/compensating variation estimates invalid. We show that severe misinterpretation occurs for any categorical attribute that contains more than two discrete levels. The frequency of two‐level attributes used in discrete choice analyses may have led some past studies to overlook this error. Given its equivalence and lower likelihood of misinterpretation, we recommend dummy coding.
ISSN:0002-9092
1467-8276
DOI:10.1111/ajae.12311