Deep reinforcement learning of viscous incompressible flow

We develop a new computational method to solve viscous incompressible fluid flow. This method is an extension of the Derivative-Free Loss Method, which solves elliptic and parabolic partial differential equations using Brownian motion, the Feynman-Kac formula, and reinforcement learning. Herein we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2022-10, Vol.467, p.111455, Article 111455
Hauptverfasser: Park, Kevin Min Seong, Stinchcombe, Adam R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a new computational method to solve viscous incompressible fluid flow. This method is an extension of the Derivative-Free Loss Method, which solves elliptic and parabolic partial differential equations using Brownian motion, the Feynman-Kac formula, and reinforcement learning. Herein we derive a martingale condition and directly incorporate a projection of the velocity to solve the incompressible Navier-Stokes equations. Our method is mesh-free, scalable, and flexible, as demonstrated with several test cases.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2022.111455