Deep reinforcement learning of viscous incompressible flow
We develop a new computational method to solve viscous incompressible fluid flow. This method is an extension of the Derivative-Free Loss Method, which solves elliptic and parabolic partial differential equations using Brownian motion, the Feynman-Kac formula, and reinforcement learning. Herein we d...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2022-10, Vol.467, p.111455, Article 111455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a new computational method to solve viscous incompressible fluid flow. This method is an extension of the Derivative-Free Loss Method, which solves elliptic and parabolic partial differential equations using Brownian motion, the Feynman-Kac formula, and reinforcement learning. Herein we derive a martingale condition and directly incorporate a projection of the velocity to solve the incompressible Navier-Stokes equations. Our method is mesh-free, scalable, and flexible, as demonstrated with several test cases. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2022.111455 |