Revealing Steric‐Hindrance‐Dependent Buried Interface Defect Passivation Mechanism in Efficient and Stable Perovskite Solar Cells with Mitigated Tensile Stress

Interface engineering is one feasible and effective approach to minimize the interfacial nonradiative recombination stemming from interfacial defects, interfacial residual stress, and interfacial energy level mismatch. Herein, a novel and effective steric‐hindrance‐dependent buried interface defect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-09, Vol.32 (36), p.n/a
Hauptverfasser: Zhou, Qian, He, Dongmei, Zhuang, Qixin, Liu, Baibai, Li, Ru, Li, Hongxiang, Zhang, Zhongying, Yang, Hua, Zhao, Pengjun, He, Yong, Zang, Zhigang, Chen, Jiangzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interface engineering is one feasible and effective approach to minimize the interfacial nonradiative recombination stemming from interfacial defects, interfacial residual stress, and interfacial energy level mismatch. Herein, a novel and effective steric‐hindrance‐dependent buried interface defect passivation and stress release strategy is reported, which is implemented by adopting a series of adamantane derivative molecules functionalized with CO (i.e., 2‐adamantanone (AD), 1‐adamantane carboxylic acid (ADCA), and 1‐adamantaneacetic acid (ADAA)) to modify SnO2/perovskite interface. All modifiers play a role in passivating interfacial defects, mitigating interfacial strain, and enhancing device performance. The steric hindrance of chemical interaction between CO in these molecules and perovskites as well as SnO2 is determined by the distance between CO and bulky adamantane ring, which gradually decreases from AD, ADCA, and ADAA. The experimental and theoretical evidences together confirmed steric‐hindrance‐dependent defect passivation effect and interfacial chemical interaction strength. The interfacial chemical interaction strength, defect passivation effect, stress release effect and thus device performance are negatively correlated with steric hindrance. Consequently, the ADAA‐modified device achieves a seductive efficiency up to 23.18%. The unencapsulated devices with ADAA maintain 81% of its initial efficiency after aging at 60 °C for 1000 h. A novel and effective steric‐hindrance‐dependent buried interface defect passivation and stress release strategy is reported. The steric‐hindrance‐dependent defect passivation and stress release mechanisms are revealed experimentally and theoretically. The ADAA‐modified device achieves a seductive power conversion efficiency up to 23.18%.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202205507