Simon’s OPUC Hausdorff dimension conjecture
We show that the Szegő matrices, associated with Verblunsky coefficients { α n } n ∈ Z + obeying ∑ n = 0 ∞ n γ | α n | 2 < ∞ for some γ ∈ ( 0 , 1 ) , are bounded for values z ∈ ∂ D outside a set of Hausdorff dimension no more than 1 - γ . In particular, the singular part of the associated probabi...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2022-10, Vol.384 (1-2), p.1-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the Szegő matrices, associated with Verblunsky coefficients
{
α
n
}
n
∈
Z
+
obeying
∑
n
=
0
∞
n
γ
|
α
n
|
2
<
∞
for some
γ
∈
(
0
,
1
)
, are bounded for values
z
∈
∂
D
outside a set of Hausdorff dimension no more than
1
-
γ
. In particular, the singular part of the associated probability measure on the unit circle is supported by a set of Hausdorff dimension no more than
1
-
γ
. This proves the OPUC Hausdorff dimension conjecture of Barry Simon from 2005. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-021-02283-7 |