On the Vertex Position Number of Graphs
In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) con...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Thankachy, Maya Elias John Thomas Chandran, Ullas Tuite, James Gabriele Di Stefano Erskine, Grahame |
description | In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) contain no point of \(S\setminus \{ y\}\). We investigate the largest and smallest orders of maximum \(x\)-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2709196662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709196662</sourcerecordid><originalsourceid>FETCH-proquest_journals_27091966623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ989TKMlIVQhLLSpJrVAIyC_OLMnMz1PwK81NSi1SyE9TcC9KLMgo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzA0tDSzMzMyNj4lQBADGzL0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709196662</pqid></control><display><type>article</type><title>On the Vertex Position Number of Graphs</title><source>Free E- Journals</source><creator>Thankachy, Maya ; Elias John Thomas ; Chandran, Ullas ; Tuite, James ; Gabriele Di Stefano ; Erskine, Grahame</creator><creatorcontrib>Thankachy, Maya ; Elias John Thomas ; Chandran, Ullas ; Tuite, James ; Gabriele Di Stefano ; Erskine, Grahame</creatorcontrib><description>In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) contain no point of \(S\setminus \{ y\}\). We investigate the largest and smallest orders of maximum \(x\)-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diameters ; Graph theory ; Graphs ; Visibility</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Thankachy, Maya</creatorcontrib><creatorcontrib>Elias John Thomas</creatorcontrib><creatorcontrib>Chandran, Ullas</creatorcontrib><creatorcontrib>Tuite, James</creatorcontrib><creatorcontrib>Gabriele Di Stefano</creatorcontrib><creatorcontrib>Erskine, Grahame</creatorcontrib><title>On the Vertex Position Number of Graphs</title><title>arXiv.org</title><description>In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) contain no point of \(S\setminus \{ y\}\). We investigate the largest and smallest orders of maximum \(x\)-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.</description><subject>Diameters</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Visibility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ989TKMlIVQhLLSpJrVAIyC_OLMnMz1PwK81NSi1SyE9TcC9KLMgo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzA0tDSzMzMyNj4lQBADGzL0A</recordid><startdate>20220919</startdate><enddate>20220919</enddate><creator>Thankachy, Maya</creator><creator>Elias John Thomas</creator><creator>Chandran, Ullas</creator><creator>Tuite, James</creator><creator>Gabriele Di Stefano</creator><creator>Erskine, Grahame</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220919</creationdate><title>On the Vertex Position Number of Graphs</title><author>Thankachy, Maya ; Elias John Thomas ; Chandran, Ullas ; Tuite, James ; Gabriele Di Stefano ; Erskine, Grahame</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27091966623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Diameters</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Visibility</topic><toplevel>online_resources</toplevel><creatorcontrib>Thankachy, Maya</creatorcontrib><creatorcontrib>Elias John Thomas</creatorcontrib><creatorcontrib>Chandran, Ullas</creatorcontrib><creatorcontrib>Tuite, James</creatorcontrib><creatorcontrib>Gabriele Di Stefano</creatorcontrib><creatorcontrib>Erskine, Grahame</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thankachy, Maya</au><au>Elias John Thomas</au><au>Chandran, Ullas</au><au>Tuite, James</au><au>Gabriele Di Stefano</au><au>Erskine, Grahame</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Vertex Position Number of Graphs</atitle><jtitle>arXiv.org</jtitle><date>2022-09-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) contain no point of \(S\setminus \{ y\}\). We investigate the largest and smallest orders of maximum \(x\)-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2709196662 |
source | Free E- Journals |
subjects | Diameters Graph theory Graphs Visibility |
title | On the Vertex Position Number of Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Vertex%20Position%20Number%20of%20Graphs&rft.jtitle=arXiv.org&rft.au=Thankachy,%20Maya&rft.date=2022-09-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2709196662%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709196662&rft_id=info:pmid/&rfr_iscdi=true |