On the Vertex Position Number of Graphs

In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Thankachy, Maya, Elias John Thomas, Chandran, Ullas, Tuite, James, Gabriele Di Stefano, Erskine, Grahame
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Thankachy, Maya
Elias John Thomas
Chandran, Ullas
Tuite, James
Gabriele Di Stefano
Erskine, Grahame
description In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) contain no point of \(S\setminus \{ y\}\). We investigate the largest and smallest orders of maximum \(x\)-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2709196662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709196662</sourcerecordid><originalsourceid>FETCH-proquest_journals_27091966623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ989TKMlIVQhLLSpJrVAIyC_OLMnMz1PwK81NSi1SyE9TcC9KLMgo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzA0tDSzMzMyNj4lQBADGzL0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709196662</pqid></control><display><type>article</type><title>On the Vertex Position Number of Graphs</title><source>Free E- Journals</source><creator>Thankachy, Maya ; Elias John Thomas ; Chandran, Ullas ; Tuite, James ; Gabriele Di Stefano ; Erskine, Grahame</creator><creatorcontrib>Thankachy, Maya ; Elias John Thomas ; Chandran, Ullas ; Tuite, James ; Gabriele Di Stefano ; Erskine, Grahame</creatorcontrib><description>In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) contain no point of \(S\setminus \{ y\}\). We investigate the largest and smallest orders of maximum \(x\)-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diameters ; Graph theory ; Graphs ; Visibility</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Thankachy, Maya</creatorcontrib><creatorcontrib>Elias John Thomas</creatorcontrib><creatorcontrib>Chandran, Ullas</creatorcontrib><creatorcontrib>Tuite, James</creatorcontrib><creatorcontrib>Gabriele Di Stefano</creatorcontrib><creatorcontrib>Erskine, Grahame</creatorcontrib><title>On the Vertex Position Number of Graphs</title><title>arXiv.org</title><description>In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) contain no point of \(S\setminus \{ y\}\). We investigate the largest and smallest orders of maximum \(x\)-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.</description><subject>Diameters</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Visibility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ989TKMlIVQhLLSpJrVAIyC_OLMnMz1PwK81NSi1SyE9TcC9KLMgo5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzA0tDSzMzMyNj4lQBADGzL0A</recordid><startdate>20220919</startdate><enddate>20220919</enddate><creator>Thankachy, Maya</creator><creator>Elias John Thomas</creator><creator>Chandran, Ullas</creator><creator>Tuite, James</creator><creator>Gabriele Di Stefano</creator><creator>Erskine, Grahame</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220919</creationdate><title>On the Vertex Position Number of Graphs</title><author>Thankachy, Maya ; Elias John Thomas ; Chandran, Ullas ; Tuite, James ; Gabriele Di Stefano ; Erskine, Grahame</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27091966623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Diameters</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Visibility</topic><toplevel>online_resources</toplevel><creatorcontrib>Thankachy, Maya</creatorcontrib><creatorcontrib>Elias John Thomas</creatorcontrib><creatorcontrib>Chandran, Ullas</creatorcontrib><creatorcontrib>Tuite, James</creatorcontrib><creatorcontrib>Gabriele Di Stefano</creatorcontrib><creatorcontrib>Erskine, Grahame</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thankachy, Maya</au><au>Elias John Thomas</au><au>Chandran, Ullas</au><au>Tuite, James</au><au>Gabriele Di Stefano</au><au>Erskine, Grahame</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Vertex Position Number of Graphs</atitle><jtitle>arXiv.org</jtitle><date>2022-09-19</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) contain no point of \(S\setminus \{ y\}\). We investigate the largest and smallest orders of maximum \(x\)-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2709196662
source Free E- Journals
subjects Diameters
Graph theory
Graphs
Visibility
title On the Vertex Position Number of Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Vertex%20Position%20Number%20of%20Graphs&rft.jtitle=arXiv.org&rft.au=Thankachy,%20Maya&rft.date=2022-09-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2709196662%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709196662&rft_id=info:pmid/&rfr_iscdi=true