On the Vertex Position Number of Graphs
In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) con...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex \(x\) of a connected graph \(G\), we say that a set \(S \subseteq V(G)\) is an \emph{\(x\)-position set} if for any \(y \in S\) the shortest \(x,y\)-paths in \(G\) contain no point of \(S\setminus \{ y\}\). We investigate the largest and smallest orders of maximum \(x\)-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs. |
---|---|
ISSN: | 2331-8422 |