Attentive Feature Augmentation for Long-Tailed Visual Recognition
Deep neural networks have achieved great success on many visual recognition tasks. However, training data with a long-tailed distribution dramatically degenerates the performance of recognition models. In order to relieve this imbalance problem, an effective Long-Tailed Visual Recognition (LTVR) fra...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2022-09, Vol.32 (9), p.5803-5816 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep neural networks have achieved great success on many visual recognition tasks. However, training data with a long-tailed distribution dramatically degenerates the performance of recognition models. In order to relieve this imbalance problem, an effective Long-Tailed Visual Recognition (LTVR) framework is proposed based on learned balance and robust features under long-tailed distribution circumstances. In this framework, a plug-and-play Attentive Feature Augmentation (AFA) module is designed to mine class-related and variation-related features of original samples via a novel hierarchical channel attention mechanism. Then, those features are aggregated to synthesize fake features to cope with the imbalance of the original dataset. Moreover, a Lay-Back Learning Schedule (LBLS) is developed to ensure a good initialization of feature embedding. Extensive experiments are conducted with a two-stage training method to verify the effectiveness of the proposed framework on both feature learning and classifier rebalancing in the long-tailed image recognition task. Experimental results show that, when trained with imbalanced datasets, the proposed framework achieves superior performance over the state-of-the-art methods. |
---|---|
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2022.3161427 |