Adaptive learning for reliability analysis using Support Vector Machines
Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that...
Gespeichert in:
Veröffentlicht in: | Reliability engineering & system safety 2022-10, Vol.226, p.108635, Article 108635 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108635 |
container_title | Reliability engineering & system safety |
container_volume | 226 |
creator | Pepper, Nick Crespo, Luis Montomoli, Francesco |
description | Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that selects informative parameter points to add to training data at each iteration to improve the accuracy of the approximation. Furthermore, we provide a means to quantify the uncertainty in the Limit State Function, using geometrical arguments to estimate an upper bound to the failure probability.
•A novel algorithm for adaptive learning of a Limit State Function (LSF) is proposed, using Support Vector Machines (SVMs).•Informative parameter points are identified through an optimisation process.•The uncertainty in the SVM is expressed using geometrical arguments in feature space. |
doi_str_mv | 10.1016/j.ress.2022.108635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709093025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832022002721</els_id><sourcerecordid>2709093025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a636251125954ce1e2a80ec02dfd2c0cb6ee01843780c421b4b787b46dc091593</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz10nSdMm4GVZ1BVWPPjnGtJ0qim1rUm70G9vSz17Gph5b3jvR8g1hQ0Fmt5WG48hbBgwNi1kysUJWVGZqRgkT0_JCpSgseQMzslFCBUAJEpkK7LfFqbr3RGjGo1vXPMZla2PPNbO5K52_RiZxtRjcCEawnx-Hbqu9X30gbaflM_GfrkGwyU5K00d8Opvrsn7w_3bbh8fXh6fdttDbHnG-tikPGWCUiaUSCxSZEYCWmBFWTALNk8RgcqEZxJswmie5JnM8iQtLCgqFF-Tm-Vv59ufAUOvq3bwU8SgWQYKFAcmJhVbVNa3IXgsdefdt_GjpqBnYrrSMzE9E9MLscl0t5hwyn906HWwDhuLhfNTWV207j_7L8XDc_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709093025</pqid></control><display><type>article</type><title>Adaptive learning for reliability analysis using Support Vector Machines</title><source>Elsevier ScienceDirect Journals</source><creator>Pepper, Nick ; Crespo, Luis ; Montomoli, Francesco</creator><creatorcontrib>Pepper, Nick ; Crespo, Luis ; Montomoli, Francesco</creatorcontrib><description>Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that selects informative parameter points to add to training data at each iteration to improve the accuracy of the approximation. Furthermore, we provide a means to quantify the uncertainty in the Limit State Function, using geometrical arguments to estimate an upper bound to the failure probability.
•A novel algorithm for adaptive learning of a Limit State Function (LSF) is proposed, using Support Vector Machines (SVMs).•Informative parameter points are identified through an optimisation process.•The uncertainty in the SVM is expressed using geometrical arguments in feature space.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2022.108635</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Adaptive learning ; Algorithms ; Computer applications ; Failure probability ; Iterative methods ; Learning ; Limit states ; Probability learning ; Reliability analysis ; Reliability engineering ; Support Vector Machines ; Upper bounds</subject><ispartof>Reliability engineering & system safety, 2022-10, Vol.226, p.108635, Article 108635</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier BV Oct 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a636251125954ce1e2a80ec02dfd2c0cb6ee01843780c421b4b787b46dc091593</citedby><cites>FETCH-LOGICAL-c372t-a636251125954ce1e2a80ec02dfd2c0cb6ee01843780c421b4b787b46dc091593</cites><orcidid>0000-0003-2829-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0951832022002721$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Pepper, Nick</creatorcontrib><creatorcontrib>Crespo, Luis</creatorcontrib><creatorcontrib>Montomoli, Francesco</creatorcontrib><title>Adaptive learning for reliability analysis using Support Vector Machines</title><title>Reliability engineering & system safety</title><description>Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that selects informative parameter points to add to training data at each iteration to improve the accuracy of the approximation. Furthermore, we provide a means to quantify the uncertainty in the Limit State Function, using geometrical arguments to estimate an upper bound to the failure probability.
•A novel algorithm for adaptive learning of a Limit State Function (LSF) is proposed, using Support Vector Machines (SVMs).•Informative parameter points are identified through an optimisation process.•The uncertainty in the SVM is expressed using geometrical arguments in feature space.</description><subject>Adaptive learning</subject><subject>Algorithms</subject><subject>Computer applications</subject><subject>Failure probability</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Limit states</subject><subject>Probability learning</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Support Vector Machines</subject><subject>Upper bounds</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz10nSdMm4GVZ1BVWPPjnGtJ0qim1rUm70G9vSz17Gph5b3jvR8g1hQ0Fmt5WG48hbBgwNi1kysUJWVGZqRgkT0_JCpSgseQMzslFCBUAJEpkK7LfFqbr3RGjGo1vXPMZla2PPNbO5K52_RiZxtRjcCEawnx-Hbqu9X30gbaflM_GfrkGwyU5K00d8Opvrsn7w_3bbh8fXh6fdttDbHnG-tikPGWCUiaUSCxSZEYCWmBFWTALNk8RgcqEZxJswmie5JnM8iQtLCgqFF-Tm-Vv59ufAUOvq3bwU8SgWQYKFAcmJhVbVNa3IXgsdefdt_GjpqBnYrrSMzE9E9MLscl0t5hwyn906HWwDhuLhfNTWV207j_7L8XDc_g</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Pepper, Nick</creator><creator>Crespo, Luis</creator><creator>Montomoli, Francesco</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2829-6774</orcidid></search><sort><creationdate>202210</creationdate><title>Adaptive learning for reliability analysis using Support Vector Machines</title><author>Pepper, Nick ; Crespo, Luis ; Montomoli, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a636251125954ce1e2a80ec02dfd2c0cb6ee01843780c421b4b787b46dc091593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive learning</topic><topic>Algorithms</topic><topic>Computer applications</topic><topic>Failure probability</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Limit states</topic><topic>Probability learning</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Support Vector Machines</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pepper, Nick</creatorcontrib><creatorcontrib>Crespo, Luis</creatorcontrib><creatorcontrib>Montomoli, Francesco</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><jtitle>Reliability engineering & system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pepper, Nick</au><au>Crespo, Luis</au><au>Montomoli, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive learning for reliability analysis using Support Vector Machines</atitle><jtitle>Reliability engineering & system safety</jtitle><date>2022-10</date><risdate>2022</risdate><volume>226</volume><spage>108635</spage><pages>108635-</pages><artnum>108635</artnum><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that selects informative parameter points to add to training data at each iteration to improve the accuracy of the approximation. Furthermore, we provide a means to quantify the uncertainty in the Limit State Function, using geometrical arguments to estimate an upper bound to the failure probability.
•A novel algorithm for adaptive learning of a Limit State Function (LSF) is proposed, using Support Vector Machines (SVMs).•Informative parameter points are identified through an optimisation process.•The uncertainty in the SVM is expressed using geometrical arguments in feature space.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2022.108635</doi><orcidid>https://orcid.org/0000-0003-2829-6774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-8320 |
ispartof | Reliability engineering & system safety, 2022-10, Vol.226, p.108635, Article 108635 |
issn | 0951-8320 1879-0836 |
language | eng |
recordid | cdi_proquest_journals_2709093025 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive learning Algorithms Computer applications Failure probability Iterative methods Learning Limit states Probability learning Reliability analysis Reliability engineering Support Vector Machines Upper bounds |
title | Adaptive learning for reliability analysis using Support Vector Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T20%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20learning%20for%20reliability%20analysis%20using%20Support%20Vector%20Machines&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Pepper,%20Nick&rft.date=2022-10&rft.volume=226&rft.spage=108635&rft.pages=108635-&rft.artnum=108635&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2022.108635&rft_dat=%3Cproquest_cross%3E2709093025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709093025&rft_id=info:pmid/&rft_els_id=S0951832022002721&rfr_iscdi=true |