Adaptive learning for reliability analysis using Support Vector Machines

Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2022-10, Vol.226, p.108635, Article 108635
Hauptverfasser: Pepper, Nick, Crespo, Luis, Montomoli, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108635
container_title Reliability engineering & system safety
container_volume 226
creator Pepper, Nick
Crespo, Luis
Montomoli, Francesco
description Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that selects informative parameter points to add to training data at each iteration to improve the accuracy of the approximation. Furthermore, we provide a means to quantify the uncertainty in the Limit State Function, using geometrical arguments to estimate an upper bound to the failure probability. •A novel algorithm for adaptive learning of a Limit State Function (LSF) is proposed, using Support Vector Machines (SVMs).•Informative parameter points are identified through an optimisation process.•The uncertainty in the SVM is expressed using geometrical arguments in feature space.
doi_str_mv 10.1016/j.ress.2022.108635
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2709093025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832022002721</els_id><sourcerecordid>2709093025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a636251125954ce1e2a80ec02dfd2c0cb6ee01843780c421b4b787b46dc091593</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz10nSdMm4GVZ1BVWPPjnGtJ0qim1rUm70G9vSz17Gph5b3jvR8g1hQ0Fmt5WG48hbBgwNi1kysUJWVGZqRgkT0_JCpSgseQMzslFCBUAJEpkK7LfFqbr3RGjGo1vXPMZla2PPNbO5K52_RiZxtRjcCEawnx-Hbqu9X30gbaflM_GfrkGwyU5K00d8Opvrsn7w_3bbh8fXh6fdttDbHnG-tikPGWCUiaUSCxSZEYCWmBFWTALNk8RgcqEZxJswmie5JnM8iQtLCgqFF-Tm-Vv59ufAUOvq3bwU8SgWQYKFAcmJhVbVNa3IXgsdefdt_GjpqBnYrrSMzE9E9MLscl0t5hwyn906HWwDhuLhfNTWV207j_7L8XDc_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709093025</pqid></control><display><type>article</type><title>Adaptive learning for reliability analysis using Support Vector Machines</title><source>Elsevier ScienceDirect Journals</source><creator>Pepper, Nick ; Crespo, Luis ; Montomoli, Francesco</creator><creatorcontrib>Pepper, Nick ; Crespo, Luis ; Montomoli, Francesco</creatorcontrib><description>Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that selects informative parameter points to add to training data at each iteration to improve the accuracy of the approximation. Furthermore, we provide a means to quantify the uncertainty in the Limit State Function, using geometrical arguments to estimate an upper bound to the failure probability. •A novel algorithm for adaptive learning of a Limit State Function (LSF) is proposed, using Support Vector Machines (SVMs).•Informative parameter points are identified through an optimisation process.•The uncertainty in the SVM is expressed using geometrical arguments in feature space.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2022.108635</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Adaptive learning ; Algorithms ; Computer applications ; Failure probability ; Iterative methods ; Learning ; Limit states ; Probability learning ; Reliability analysis ; Reliability engineering ; Support Vector Machines ; Upper bounds</subject><ispartof>Reliability engineering &amp; system safety, 2022-10, Vol.226, p.108635, Article 108635</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier BV Oct 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a636251125954ce1e2a80ec02dfd2c0cb6ee01843780c421b4b787b46dc091593</citedby><cites>FETCH-LOGICAL-c372t-a636251125954ce1e2a80ec02dfd2c0cb6ee01843780c421b4b787b46dc091593</cites><orcidid>0000-0003-2829-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0951832022002721$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Pepper, Nick</creatorcontrib><creatorcontrib>Crespo, Luis</creatorcontrib><creatorcontrib>Montomoli, Francesco</creatorcontrib><title>Adaptive learning for reliability analysis using Support Vector Machines</title><title>Reliability engineering &amp; system safety</title><description>Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that selects informative parameter points to add to training data at each iteration to improve the accuracy of the approximation. Furthermore, we provide a means to quantify the uncertainty in the Limit State Function, using geometrical arguments to estimate an upper bound to the failure probability. •A novel algorithm for adaptive learning of a Limit State Function (LSF) is proposed, using Support Vector Machines (SVMs).•Informative parameter points are identified through an optimisation process.•The uncertainty in the SVM is expressed using geometrical arguments in feature space.</description><subject>Adaptive learning</subject><subject>Algorithms</subject><subject>Computer applications</subject><subject>Failure probability</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Limit states</subject><subject>Probability learning</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Support Vector Machines</subject><subject>Upper bounds</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz10nSdMm4GVZ1BVWPPjnGtJ0qim1rUm70G9vSz17Gph5b3jvR8g1hQ0Fmt5WG48hbBgwNi1kysUJWVGZqRgkT0_JCpSgseQMzslFCBUAJEpkK7LfFqbr3RGjGo1vXPMZla2PPNbO5K52_RiZxtRjcCEawnx-Hbqu9X30gbaflM_GfrkGwyU5K00d8Opvrsn7w_3bbh8fXh6fdttDbHnG-tikPGWCUiaUSCxSZEYCWmBFWTALNk8RgcqEZxJswmie5JnM8iQtLCgqFF-Tm-Vv59ufAUOvq3bwU8SgWQYKFAcmJhVbVNa3IXgsdefdt_GjpqBnYrrSMzE9E9MLscl0t5hwyn906HWwDhuLhfNTWV207j_7L8XDc_g</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Pepper, Nick</creator><creator>Crespo, Luis</creator><creator>Montomoli, Francesco</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2829-6774</orcidid></search><sort><creationdate>202210</creationdate><title>Adaptive learning for reliability analysis using Support Vector Machines</title><author>Pepper, Nick ; Crespo, Luis ; Montomoli, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a636251125954ce1e2a80ec02dfd2c0cb6ee01843780c421b4b787b46dc091593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive learning</topic><topic>Algorithms</topic><topic>Computer applications</topic><topic>Failure probability</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Limit states</topic><topic>Probability learning</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Support Vector Machines</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pepper, Nick</creatorcontrib><creatorcontrib>Crespo, Luis</creatorcontrib><creatorcontrib>Montomoli, Francesco</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pepper, Nick</au><au>Crespo, Luis</au><au>Montomoli, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive learning for reliability analysis using Support Vector Machines</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2022-10</date><risdate>2022</risdate><volume>226</volume><spage>108635</spage><pages>108635-</pages><artnum>108635</artnum><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that selects informative parameter points to add to training data at each iteration to improve the accuracy of the approximation. Furthermore, we provide a means to quantify the uncertainty in the Limit State Function, using geometrical arguments to estimate an upper bound to the failure probability. •A novel algorithm for adaptive learning of a Limit State Function (LSF) is proposed, using Support Vector Machines (SVMs).•Informative parameter points are identified through an optimisation process.•The uncertainty in the SVM is expressed using geometrical arguments in feature space.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2022.108635</doi><orcidid>https://orcid.org/0000-0003-2829-6774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2022-10, Vol.226, p.108635, Article 108635
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_journals_2709093025
source Elsevier ScienceDirect Journals
subjects Adaptive learning
Algorithms
Computer applications
Failure probability
Iterative methods
Learning
Limit states
Probability learning
Reliability analysis
Reliability engineering
Support Vector Machines
Upper bounds
title Adaptive learning for reliability analysis using Support Vector Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T20%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20learning%20for%20reliability%20analysis%20using%20Support%20Vector%20Machines&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Pepper,%20Nick&rft.date=2022-10&rft.volume=226&rft.spage=108635&rft.pages=108635-&rft.artnum=108635&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2022.108635&rft_dat=%3Cproquest_cross%3E2709093025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709093025&rft_id=info:pmid/&rft_els_id=S0951832022002721&rfr_iscdi=true