Adaptive learning for reliability analysis using Support Vector Machines

Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2022-10, Vol.226, p.108635, Article 108635
Hauptverfasser: Pepper, Nick, Crespo, Luis, Montomoli, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an expensive computational model of a system subject to reliability requirements, this work shows how to approximate the failure probability by learning adaptively the high-likelihood regions of the Limit State Function using Support Vector Machines. To this end, an algorithm is proposed that selects informative parameter points to add to training data at each iteration to improve the accuracy of the approximation. Furthermore, we provide a means to quantify the uncertainty in the Limit State Function, using geometrical arguments to estimate an upper bound to the failure probability. •A novel algorithm for adaptive learning of a Limit State Function (LSF) is proposed, using Support Vector Machines (SVMs).•Informative parameter points are identified through an optimisation process.•The uncertainty in the SVM is expressed using geometrical arguments in feature space.
ISSN:0951-8320
1879-0836
DOI:10.1016/j.ress.2022.108635