A Two-Fold Cross-Validation Training Framework Combined with Meta-Learning for Code-Switching Speech Recognition

Although end-to-end based speech recognition research for Mandarin-English code-switching has attracted increasing interests, it remains challenging due to data scarcity. Meta-learning approach is popular with low-resource modeling using high-resource data, but it does not make full use of low-resou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2022/09/01, Vol.E105.D(9), pp.1639-1642
Hauptverfasser: HUANG, Zheying, XU, Ji, ZHAO, Qingwei, ZHANG, Pengyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although end-to-end based speech recognition research for Mandarin-English code-switching has attracted increasing interests, it remains challenging due to data scarcity. Meta-learning approach is popular with low-resource modeling using high-resource data, but it does not make full use of low-resource code-switching data. Therefore we propose a two-fold cross-validation training framework combined with meta-learning approach. Experiments on the SEAME corpus demonstrate the effects of our method.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2022EDL8036