Detection Performance Analysis of Distributed-Processing Multistatic Radar System with Different Multivariate Dependence Models in Local Decisions
In a previous study, we proposed a new method based on copula theory to evaluate the detection performance of distributed-processing multistatic radar systems, in which the dependence of local decisions was modeled by a Gaussian copula with linear dependence and no tail dependence. However, we also...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Communications 2022/09/01, Vol.E105.B(9), pp.1097-1104 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a previous study, we proposed a new method based on copula theory to evaluate the detection performance of distributed-processing multistatic radar systems, in which the dependence of local decisions was modeled by a Gaussian copula with linear dependence and no tail dependence. However, we also noted that one main limitation of the study was the lack of investigations on the tail-dependence and nonlinear dependence among local detectors' inputs whose densities have long tails and are often used to model clutter and wanted signals in high-resolution radars. In this work, we attempt to overcome this shortcoming by extending the application of the proposed method to several types of multivariate copula-based dependence models to clarify the effects of tail-dependence and different dependence models on the system detection performance in detail. Our careful analysis provides two interesting and important clarifications: first, the detection performance degrades significantly with tail dependence; and second, this degradation mainly originates from the upper tail dependence, while the lower tail and nonlinear dependence unexpectedly improve the system performance. |
---|---|
ISSN: | 0916-8516 1745-1345 |
DOI: | 10.1587/transcom.2021EBP3184 |