Energy transfer mechanisms in adverse pressure gradient turbulent boundary layers: production and inter-component redistribution
Production and inter-component redistribution of turbulence in adverse pressure gradient (APG) turbulent boundary layers (TBLs) with small and large velocity defects are investigated, along with the structures playing a role in these energy transfer mechanisms. We examine the wall-normal and spectra...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2022-10, Vol.948, Article A5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Production and inter-component redistribution of turbulence in adverse pressure gradient (APG) turbulent boundary layers (TBLs) with small and large velocity defects are investigated, along with the structures playing a role in these energy transfer mechanisms. We examine the wall-normal and spectral distributions of energy, production and pressure-strain in APG TBLs, and compare these distributions with those in canonical flows. It is found that the spectral distributions of production and pressure-strain are not affected profoundly by an increase of the velocity defect, although the energy spectra change drastically in the inner layer of the large-defect APG TBL. In the latter, the signature of the inner-layer streaks is absent from the energy spectra. In the outer layer, energetic, production and pressure-strain structures appear to change from wall-attached to wall-detached structures with increasing velocity defect. Despite this, the two-dimensional spectral distributions have similar shapes and wavelength aspect ratios of the peaks in all these flows. Therefore, the conclusion is that the mechanisms responsible for turbulence production and inter-component energy transfer may remain the same within each layer in all these flows. It is the intensity of these mechanisms within one layer that changes with velocity defect, because of the local mean shear variation. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2022.679 |