LOCALIZATION BY $2$ -PERIODIC COMPLEXES AND VIRTUAL STRUCTURE SHEAVES

In [12], Kim and the first author proved a result comparing the virtual fundamental classes of the moduli spaces of $\varepsilon $ -stable quasimaps and $\varepsilon $ -stable $LG$ -quasimaps by studying localized Chern characters for $2$ -periodic complexes. In this paper, we study a K-theoretic an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Mathematics of Jussieu 2022-09, Vol.21 (5), p.1477-1506
Hauptverfasser: Oh, Jeongseok, Sreedhar, Bhamidi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In [12], Kim and the first author proved a result comparing the virtual fundamental classes of the moduli spaces of $\varepsilon $ -stable quasimaps and $\varepsilon $ -stable $LG$ -quasimaps by studying localized Chern characters for $2$ -periodic complexes. In this paper, we study a K-theoretic analogue of the localized Chern character map and show that for a Koszul $2$ -periodic complex it coincides with the cosection-localized Gysin map of Kiem and Li [11]. As an application, we compare the virtual structure sheaves of the moduli space of $\varepsilon $ -stable quasimaps and $\varepsilon $ -stable $LG$ -quasimaps.
ISSN:1474-7480
1475-3030
DOI:10.1017/S1474748020000626