LOCALIZATION BY $2$ -PERIODIC COMPLEXES AND VIRTUAL STRUCTURE SHEAVES
In [12], Kim and the first author proved a result comparing the virtual fundamental classes of the moduli spaces of $\varepsilon $ -stable quasimaps and $\varepsilon $ -stable $LG$ -quasimaps by studying localized Chern characters for $2$ -periodic complexes. In this paper, we study a K-theoretic an...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2022-09, Vol.21 (5), p.1477-1506 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In [12], Kim and the first author proved a result comparing the virtual fundamental classes of the moduli spaces of
$\varepsilon $
-stable quasimaps and
$\varepsilon $
-stable
$LG$
-quasimaps by studying localized Chern characters for
$2$
-periodic complexes. In this paper, we study a K-theoretic analogue of the localized Chern character map and show that for a Koszul
$2$
-periodic complex it coincides with the cosection-localized Gysin map of Kiem and Li [11]. As an application, we compare the virtual structure sheaves of the moduli space of
$\varepsilon $
-stable quasimaps and
$\varepsilon $
-stable
$LG$
-quasimaps. |
---|---|
ISSN: | 1474-7480 1475-3030 |
DOI: | 10.1017/S1474748020000626 |