A risk measurement approach from risk-averse stochastic optimization of score functions
We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee that our problem has a solution. We characterize and explore the properties of the argmin as a risk measure and the minimum as a deviation measure. We provide a connection between linear re...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Marcelo Brutti Righi Müller, Fernanda Maria Moresco, Marlon Ruoso |
description | We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee that our problem has a solution. We characterize and explore the properties of the argmin as a risk measure and the minimum as a deviation measure. We provide a connection between linear regression models and our framework. Based on this conception, we consider conditional risk and provide a connection between the minimum deviation portfolio and linear regression. Moreover, we also link the optimal replication hedging to our framework. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2708877411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708877411</sourcerecordid><originalsourceid>FETCH-proquest_journals_27088774113</originalsourceid><addsrcrecordid>eNqNjEEKwjAUBYMgWLR3-OC6kCat6VZE8QCCyxJCQlNNUvMTF57eKh7A1cCbxyxIwTivq65hbEVKxJFSynaCtS0vyHUP0eINnJaYo3baJ5DTFINUA5gY3FdX8qkjasAU1CAxWQVhStbZl0w2eAgGUIWowWSvPgtuyNLIO-ryxzXZno6Xw7ma04-sMfVjyNHPqmeCdp0QTV3z_15v1QFCqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708877411</pqid></control><display><type>article</type><title>A risk measurement approach from risk-averse stochastic optimization of score functions</title><source>Free E- Journals</source><creator>Marcelo Brutti Righi ; Müller, Fernanda Maria ; Moresco, Marlon Ruoso</creator><creatorcontrib>Marcelo Brutti Righi ; Müller, Fernanda Maria ; Moresco, Marlon Ruoso</creatorcontrib><description>We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee that our problem has a solution. We characterize and explore the properties of the argmin as a risk measure and the minimum as a deviation measure. We provide a connection between linear regression models and our framework. Based on this conception, we consider conditional risk and provide a connection between the minimum deviation portfolio and linear regression. Moreover, we also link the optimal replication hedging to our framework.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deviation ; Optimization ; Regression models ; Risk</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Marcelo Brutti Righi</creatorcontrib><creatorcontrib>Müller, Fernanda Maria</creatorcontrib><creatorcontrib>Moresco, Marlon Ruoso</creatorcontrib><title>A risk measurement approach from risk-averse stochastic optimization of score functions</title><title>arXiv.org</title><description>We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee that our problem has a solution. We characterize and explore the properties of the argmin as a risk measure and the minimum as a deviation measure. We provide a connection between linear regression models and our framework. Based on this conception, we consider conditional risk and provide a connection between the minimum deviation portfolio and linear regression. Moreover, we also link the optimal replication hedging to our framework.</description><subject>Deviation</subject><subject>Optimization</subject><subject>Regression models</subject><subject>Risk</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEEKwjAUBYMgWLR3-OC6kCat6VZE8QCCyxJCQlNNUvMTF57eKh7A1cCbxyxIwTivq65hbEVKxJFSynaCtS0vyHUP0eINnJaYo3baJ5DTFINUA5gY3FdX8qkjasAU1CAxWQVhStbZl0w2eAgGUIWowWSvPgtuyNLIO-ryxzXZno6Xw7ma04-sMfVjyNHPqmeCdp0QTV3z_15v1QFCqg</recordid><startdate>20230505</startdate><enddate>20230505</enddate><creator>Marcelo Brutti Righi</creator><creator>Müller, Fernanda Maria</creator><creator>Moresco, Marlon Ruoso</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230505</creationdate><title>A risk measurement approach from risk-averse stochastic optimization of score functions</title><author>Marcelo Brutti Righi ; Müller, Fernanda Maria ; Moresco, Marlon Ruoso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27088774113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deviation</topic><topic>Optimization</topic><topic>Regression models</topic><topic>Risk</topic><toplevel>online_resources</toplevel><creatorcontrib>Marcelo Brutti Righi</creatorcontrib><creatorcontrib>Müller, Fernanda Maria</creatorcontrib><creatorcontrib>Moresco, Marlon Ruoso</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcelo Brutti Righi</au><au>Müller, Fernanda Maria</au><au>Moresco, Marlon Ruoso</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A risk measurement approach from risk-averse stochastic optimization of score functions</atitle><jtitle>arXiv.org</jtitle><date>2023-05-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee that our problem has a solution. We characterize and explore the properties of the argmin as a risk measure and the minimum as a deviation measure. We provide a connection between linear regression models and our framework. Based on this conception, we consider conditional risk and provide a connection between the minimum deviation portfolio and linear regression. Moreover, we also link the optimal replication hedging to our framework.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2708877411 |
source | Free E- Journals |
subjects | Deviation Optimization Regression models Risk |
title | A risk measurement approach from risk-averse stochastic optimization of score functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20risk%20measurement%20approach%20from%20risk-averse%20stochastic%20optimization%20of%20score%20functions&rft.jtitle=arXiv.org&rft.au=Marcelo%20Brutti%20Righi&rft.date=2023-05-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2708877411%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708877411&rft_id=info:pmid/&rfr_iscdi=true |