A risk measurement approach from risk-averse stochastic optimization of score functions

We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee that our problem has a solution. We characterize and explore the properties of the argmin as a risk measure and the minimum as a deviation measure. We provide a connection between linear re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Marcelo Brutti Righi, Müller, Fernanda Maria, Moresco, Marlon Ruoso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a risk measurement approach for a risk-averse stochastic problem. We provide results that guarantee that our problem has a solution. We characterize and explore the properties of the argmin as a risk measure and the minimum as a deviation measure. We provide a connection between linear regression models and our framework. Based on this conception, we consider conditional risk and provide a connection between the minimum deviation portfolio and linear regression. Moreover, we also link the optimal replication hedging to our framework.
ISSN:2331-8422