Density functional study of twisted graphene L10-FePd heterogeneous interface
Graphene on L 1 0-FePd(001), which has been experimentally studied in recent years, is a heterogeneous interface with a significant lattice symmetry mismatch between the honeycomb structure of graphene and tetragonal alloy surface. In this work, we report on the density functional study of its atomi...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-09, Vol.132 (9) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene on
L
1
0-FePd(001), which has been experimentally studied in recent years, is a heterogeneous interface with a significant lattice symmetry mismatch between the honeycomb structure of graphene and tetragonal alloy surface. In this work, we report on the density functional study of its atomic-scale configurations, electronic and magnetic properties, and adsorption mechanism, which have not been well understood in previous experimental studies. We propose various atomic-scale models, including simple nontwisted and low-strain twisted interfaces, and analyze their energetical stability by performing structural optimizations using the van der Waals interactions of both DFT-D2 and optB86b-vdW functionals. The binding energy of the most stable structure reached
E
B
=
−
0.22 eV/atom for DFT-D2 (
E
B
=
−
0.19 eV/atom for optB86b-vdW). The calculated FePd-graphene spacing distance was approximately 2 Å, which successfully reproduced the experimental value. We also find out characteristic behaviors: the modulation of
π-bands, the suppression of the site-dependence of adsorption energy, and the rise of moiré-like corrugated buckling. In addition, our atomic structure is expected to help build low-cost computational models for investigating the physical properties of
L
1
0 alloys/two-dimensional interfaces. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0101703 |