Density functional study of twisted graphene L10-FePd heterogeneous interface

Graphene on L 1 0-FePd(001), which has been experimentally studied in recent years, is a heterogeneous interface with a significant lattice symmetry mismatch between the honeycomb structure of graphene and tetragonal alloy surface. In this work, we report on the density functional study of its atomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-09, Vol.132 (9)
Hauptverfasser: Uemoto, Mitsuharu, Adachi, Hayato, Naganuma, Hiroshi, Ono, Tomoya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene on L 1 0-FePd(001), which has been experimentally studied in recent years, is a heterogeneous interface with a significant lattice symmetry mismatch between the honeycomb structure of graphene and tetragonal alloy surface. In this work, we report on the density functional study of its atomic-scale configurations, electronic and magnetic properties, and adsorption mechanism, which have not been well understood in previous experimental studies. We propose various atomic-scale models, including simple nontwisted and low-strain twisted interfaces, and analyze their energetical stability by performing structural optimizations using the van der Waals interactions of both DFT-D2 and optB86b-vdW functionals. The binding energy of the most stable structure reached E B = − 0.22 eV/atom for DFT-D2 ( E B = − 0.19 eV/atom for optB86b-vdW). The calculated FePd-graphene spacing distance was approximately 2 Å, which successfully reproduced the experimental value. We also find out characteristic behaviors: the modulation of π-bands, the suppression of the site-dependence of adsorption energy, and the rise of moiré-like corrugated buckling. In addition, our atomic structure is expected to help build low-cost computational models for investigating the physical properties of L 1 0 alloys/two-dimensional interfaces.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0101703