Sparsity-Aware Robust Normalized Subband Adaptive Filtering Algorithms With Alternating Optimization of Parameters
This brief proposes a unified sparsity-aware robust normalized subband adaptive filtering (SA-RNSAF) algorithm for identification of sparse systems under impulsive noises. The proposed SA-RNSAF algorithm generalizes different algorithms by defining the robust criterion and sparsity-aware penalty. Fu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-09, Vol.69 (9), p.3934-3938 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This brief proposes a unified sparsity-aware robust normalized subband adaptive filtering (SA-RNSAF) algorithm for identification of sparse systems under impulsive noises. The proposed SA-RNSAF algorithm generalizes different algorithms by defining the robust criterion and sparsity-aware penalty. Furthermore, by alternating optimization of the parameters (AOP) of the algorithm, including the step-size and the sparsity penalty weight, we develop the AOP-SA-RNSAF algorithm, which not only exhibits fast convergence but also obtains low steady-state misadjustment for sparse systems. Simulations in various noise scenarios have verified that the proposed AOP-SA-RNSAF algorithm outperforms existing techniques. |
---|---|
ISSN: | 1549-7747 1558-3791 |
DOI: | 10.1109/TCSII.2022.3171672 |