Designing order–disorder transformation in high-entropy ferritic steels

Order–disorder transformations hold an essential place in chemically complex high-entropy ferritic steels (HEFSs) due to their critical technological application. The chemical inhomogeneity arising from mixing of multi-principal elements of varying chemistry can drive property altering changes at th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2022-01, Vol.37 (1), p.136-144
Hauptverfasser: Singh, Prashant, Johnson, Duane D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 136
container_title Journal of materials research
container_volume 37
creator Singh, Prashant
Johnson, Duane D.
description Order–disorder transformations hold an essential place in chemically complex high-entropy ferritic steels (HEFSs) due to their critical technological application. The chemical inhomogeneity arising from mixing of multi-principal elements of varying chemistry can drive property altering changes at the atomic scale, in particular short-range order. Using density-functional theory-based linear-response theory, we predict the effect of compositional tuning on the order–disorder transformation in ferritic steels—focusing on Cr–Ni–Al–Ti–Fe HEFSs. We show that Ti content in Cr–Ni–Al–Ti–Fe solid solutions can be tuned to modify short-range order that changes the order–disorder path from BCC-B2 (Ti atomic-fraction = 0) to BCC-B2-L2 1 (Ti atomic-fraction > 0) consistent with existing experiments. Our study suggests that tuning degree of SRO through compositional variation can be used as an effective means to optimize phase selection in technologically useful alloys. Graphic abstract
doi_str_mv 10.1557/s43578-021-00336-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2708280638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708280638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4d8873732bee7af99b282bc45ebef68e3e55afda144b31075e8df95bcddc3a433</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyRmA3-jZ0Rlb9KSCwwW058nbpqnWKnqrrxDrwhT0JokNiY7hnOd670IXRJyTWVUt1kwaXSmDCKCeG8xLsjNGFECCw5K4_RhGgtMKuoOEVnOS8JoZIoMUHzO8ihjSG2RZccpK-PTxfyIRZ9sjH7Lq1tH7pYhFgsQrvAEPvUbfaFh5RCH5oi9wCrfI5OvF1luPi9U_T2cP86e8LPL4_z2e0zbnjJeyyc1oorzmoAZX1V1UyzuhESavClBg5SWu8sFaLmlCgJ2vlK1o1zDbeC8ym6Gnc3qXvfQu7NstumOLw0TBHNNCm5HlpsbDWpyzmBN5sU1jbtDSXmR5kZlZlBmTkoM7sB4iOUh3JsIf1N_0N9A8sxcig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708280638</pqid></control><display><type>article</type><title>Designing order–disorder transformation in high-entropy ferritic steels</title><source>Springer Nature - Complete Springer Journals</source><creator>Singh, Prashant ; Johnson, Duane D.</creator><creatorcontrib>Singh, Prashant ; Johnson, Duane D.</creatorcontrib><description>Order–disorder transformations hold an essential place in chemically complex high-entropy ferritic steels (HEFSs) due to their critical technological application. The chemical inhomogeneity arising from mixing of multi-principal elements of varying chemistry can drive property altering changes at the atomic scale, in particular short-range order. Using density-functional theory-based linear-response theory, we predict the effect of compositional tuning on the order–disorder transformation in ferritic steels—focusing on Cr–Ni–Al–Ti–Fe HEFSs. We show that Ti content in Cr–Ni–Al–Ti–Fe solid solutions can be tuned to modify short-range order that changes the order–disorder path from BCC-B2 (Ti atomic-fraction = 0) to BCC-B2-L2 1 (Ti atomic-fraction &gt; 0) consistent with existing experiments. Our study suggests that tuning degree of SRO through compositional variation can be used as an effective means to optimize phase selection in technologically useful alloys. Graphic abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-021-00336-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aluminum ; Applied and Technical Physics ; Biomaterials ; Chemistry and Materials Science ; Chromium ; Density functional theory ; Ferritic stainless steels ; Heat of transformation ; Inhomogeneity ; Inorganic Chemistry ; Invited Feature Paper ; Iron ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Nickel ; Short range order ; Solid solutions ; Titanium ; Tuning</subject><ispartof>Journal of materials research, 2022-01, Vol.37 (1), p.136-144</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4d8873732bee7af99b282bc45ebef68e3e55afda144b31075e8df95bcddc3a433</citedby><cites>FETCH-LOGICAL-c363t-4d8873732bee7af99b282bc45ebef68e3e55afda144b31075e8df95bcddc3a433</cites><orcidid>0000-0002-3460-9290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-021-00336-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-021-00336-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><title>Designing order–disorder transformation in high-entropy ferritic steels</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Order–disorder transformations hold an essential place in chemically complex high-entropy ferritic steels (HEFSs) due to their critical technological application. The chemical inhomogeneity arising from mixing of multi-principal elements of varying chemistry can drive property altering changes at the atomic scale, in particular short-range order. Using density-functional theory-based linear-response theory, we predict the effect of compositional tuning on the order–disorder transformation in ferritic steels—focusing on Cr–Ni–Al–Ti–Fe HEFSs. We show that Ti content in Cr–Ni–Al–Ti–Fe solid solutions can be tuned to modify short-range order that changes the order–disorder path from BCC-B2 (Ti atomic-fraction = 0) to BCC-B2-L2 1 (Ti atomic-fraction &gt; 0) consistent with existing experiments. Our study suggests that tuning degree of SRO through compositional variation can be used as an effective means to optimize phase selection in technologically useful alloys. Graphic abstract</description><subject>Aluminum</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Density functional theory</subject><subject>Ferritic stainless steels</subject><subject>Heat of transformation</subject><subject>Inhomogeneity</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Paper</subject><subject>Iron</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Short range order</subject><subject>Solid solutions</subject><subject>Titanium</subject><subject>Tuning</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kL1OwzAUhS0EEqXwAkyRmA3-jZ0Rlb9KSCwwW058nbpqnWKnqrrxDrwhT0JokNiY7hnOd670IXRJyTWVUt1kwaXSmDCKCeG8xLsjNGFECCw5K4_RhGgtMKuoOEVnOS8JoZIoMUHzO8ihjSG2RZccpK-PTxfyIRZ9sjH7Lq1tH7pYhFgsQrvAEPvUbfaFh5RCH5oi9wCrfI5OvF1luPi9U_T2cP86e8LPL4_z2e0zbnjJeyyc1oorzmoAZX1V1UyzuhESavClBg5SWu8sFaLmlCgJ2vlK1o1zDbeC8ym6Gnc3qXvfQu7NstumOLw0TBHNNCm5HlpsbDWpyzmBN5sU1jbtDSXmR5kZlZlBmTkoM7sB4iOUh3JsIf1N_0N9A8sxcig</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Singh, Prashant</creator><creator>Johnson, Duane D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3460-9290</orcidid></search><sort><creationdate>20220114</creationdate><title>Designing order–disorder transformation in high-entropy ferritic steels</title><author>Singh, Prashant ; Johnson, Duane D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4d8873732bee7af99b282bc45ebef68e3e55afda144b31075e8df95bcddc3a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Density functional theory</topic><topic>Ferritic stainless steels</topic><topic>Heat of transformation</topic><topic>Inhomogeneity</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Paper</topic><topic>Iron</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Short range order</topic><topic>Solid solutions</topic><topic>Titanium</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Prashant</au><au>Johnson, Duane D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing order–disorder transformation in high-entropy ferritic steels</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-01-14</date><risdate>2022</risdate><volume>37</volume><issue>1</issue><spage>136</spage><epage>144</epage><pages>136-144</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Order–disorder transformations hold an essential place in chemically complex high-entropy ferritic steels (HEFSs) due to their critical technological application. The chemical inhomogeneity arising from mixing of multi-principal elements of varying chemistry can drive property altering changes at the atomic scale, in particular short-range order. Using density-functional theory-based linear-response theory, we predict the effect of compositional tuning on the order–disorder transformation in ferritic steels—focusing on Cr–Ni–Al–Ti–Fe HEFSs. We show that Ti content in Cr–Ni–Al–Ti–Fe solid solutions can be tuned to modify short-range order that changes the order–disorder path from BCC-B2 (Ti atomic-fraction = 0) to BCC-B2-L2 1 (Ti atomic-fraction &gt; 0) consistent with existing experiments. Our study suggests that tuning degree of SRO through compositional variation can be used as an effective means to optimize phase selection in technologically useful alloys. Graphic abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-021-00336-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3460-9290</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2022-01, Vol.37 (1), p.136-144
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2708280638
source Springer Nature - Complete Springer Journals
subjects Aluminum
Applied and Technical Physics
Biomaterials
Chemistry and Materials Science
Chromium
Density functional theory
Ferritic stainless steels
Heat of transformation
Inhomogeneity
Inorganic Chemistry
Invited Feature Paper
Iron
Materials Engineering
Materials research
Materials Science
Nanotechnology
Nickel
Short range order
Solid solutions
Titanium
Tuning
title Designing order–disorder transformation in high-entropy ferritic steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20order%E2%80%93disorder%20transformation%20in%20high-entropy%20ferritic%20steels&rft.jtitle=Journal%20of%20materials%20research&rft.au=Singh,%20Prashant&rft.date=2022-01-14&rft.volume=37&rft.issue=1&rft.spage=136&rft.epage=144&rft.pages=136-144&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-021-00336-w&rft_dat=%3Cproquest_cross%3E2708280638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708280638&rft_id=info:pmid/&rfr_iscdi=true