Extension of localisation operators to ultradistributional symbols with super-exponential growth

In the Gelfand–Shilov setting, the localisation operator A a φ 1 , φ 2 is equal to the Weyl operator whose symbol is the convolution of a with the Wigner transform of the windows φ 2 and φ 1 . We employ this fact to extend the definition of localisation operators to symbols a having very fast super-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-10, Vol.116 (4), Article 172
Hauptverfasser: Pilipović, Stevan, Prangoski, Bojan, Vučković, Ɖorđe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the Gelfand–Shilov setting, the localisation operator A a φ 1 , φ 2 is equal to the Weyl operator whose symbol is the convolution of a with the Wigner transform of the windows φ 2 and φ 1 . We employ this fact to extend the definition of localisation operators to symbols a having very fast super-exponential growth by allowing them to be mappings from D { M p } ( R d ) into D ′ { M p } ( R d ) , where M p , p ∈ N , is a non-quasi-analytic Gevrey type sequence. By choosing the windows φ 1 and φ 2 appropriately, our main results show that one can consider symbols with growth in position space of the form exp ( exp ( l | · | q ) ) , l , q > 0 .
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-022-01297-3