Extension of localisation operators to ultradistributional symbols with super-exponential growth
In the Gelfand–Shilov setting, the localisation operator A a φ 1 , φ 2 is equal to the Weyl operator whose symbol is the convolution of a with the Wigner transform of the windows φ 2 and φ 1 . We employ this fact to extend the definition of localisation operators to symbols a having very fast super-...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-10, Vol.116 (4), Article 172 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the Gelfand–Shilov setting, the localisation operator
A
a
φ
1
,
φ
2
is equal to the Weyl operator whose symbol is the convolution of
a
with the Wigner transform of the windows
φ
2
and
φ
1
. We employ this fact to extend the definition of localisation operators to symbols
a
having very fast super-exponential growth by allowing them to be mappings from
D
{
M
p
}
(
R
d
)
into
D
′
{
M
p
}
(
R
d
)
, where
M
p
,
p
∈
N
, is a non-quasi-analytic Gevrey type sequence. By choosing the windows
φ
1
and
φ
2
appropriately, our main results show that one can consider symbols with growth in position space of the form
exp
(
exp
(
l
|
·
|
q
)
)
,
l
,
q
>
0
. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-022-01297-3 |