AesUST: Towards Aesthetic-Enhanced Universal Style Transfer
Recent studies have shown remarkable success in universal style transfer which transfers arbitrary visual styles to content images. However, existing approaches suffer from the aesthetic-unrealistic problem that introduces disharmonious patterns and evident artifacts, making the results easy to spot...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-08 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies have shown remarkable success in universal style transfer which transfers arbitrary visual styles to content images. However, existing approaches suffer from the aesthetic-unrealistic problem that introduces disharmonious patterns and evident artifacts, making the results easy to spot from real paintings. To address this limitation, we propose AesUST, a novel Aesthetic-enhanced Universal Style Transfer approach that can generate aesthetically more realistic and pleasing results for arbitrary styles. Specifically, our approach introduces an aesthetic discriminator to learn the universal human-delightful aesthetic features from a large corpus of artist-created paintings. Then, the aesthetic features are incorporated to enhance the style transfer process via a novel Aesthetic-aware Style-Attention (AesSA) module. Such an AesSA module enables our AesUST to efficiently and flexibly integrate the style patterns according to the global aesthetic channel distribution of the style image and the local semantic spatial distribution of the content image. Moreover, we also develop a new two-stage transfer training strategy with two aesthetic regularizations to train our model more effectively, further improving stylization performance. Extensive experiments and user studies demonstrate that our approach synthesizes aesthetically more harmonious and realistic results than state of the art, greatly narrowing the disparity with real artist-created paintings. Our code is available at https://github.com/EndyWon/AesUST. |
---|---|
ISSN: | 2331-8422 |