When every finitely projective ideal is projective

This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2022-09, Vol.53 (3), p.579-586
Hauptverfasser: Mahdou, Najib, Moussaoui, Sanae, Moutui, Moutu Abdou Salam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 586
container_issue 3
container_start_page 579
container_title Indian journal of pure and applied mathematics
container_volume 53
creator Mahdou, Najib
Moussaoui, Sanae
Moutui, Moutu Abdou Salam
description This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our work is motivated by an attempt to generate new original classes of rings possessing this property.
doi_str_mv 10.1007/s13226-021-00148-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707899477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707899477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-55683204308ab1e2214b32333d55949fcd872c35ed1583eefaba00dfbdac5a1d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC6-jJrUmWMniDATeKy5A2p9pSO2PSGejbG62gK1fn5_Bf4CPknMElA9BXiQnOSwqcUQAmDZ0OyAKsVlTLUh1mDcxSpYw5JicpdQClAGsXhL-84VDgHuNUNO3QjthPxTZuOqzHdo9FG9D3RZv-_E7JUeP7hGc_d0meb2-eVvd0_Xj3sLpe05oDjHmsNIKDFGB8xZBzJivBhRBBKSttUwejeS0UBqaMQGx85QFCUwVfK8-CWJKLuTdPf-wwja7b7OKQJx3XoI21Uuvs4rOrjpuUIjZuG9t3HyfHwH2xcTMbl9m4bzZuyiExh1I2D68Yf6v_SX0Cebhm4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707899477</pqid></control><display><type>article</type><title>When every finitely projective ideal is projective</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mahdou, Najib ; Moussaoui, Sanae ; Moutui, Moutu Abdou Salam</creator><creatorcontrib>Mahdou, Najib ; Moussaoui, Sanae ; Moutui, Moutu Abdou Salam</creatorcontrib><description>This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our work is motivated by an attempt to generate new original classes of rings possessing this property.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-021-00148-y</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Original Research ; Rings (mathematics)</subject><ispartof>Indian journal of pure and applied mathematics, 2022-09, Vol.53 (3), p.579-586</ispartof><rights>The Indian National Science Academy 2022. corrected publication 2022</rights><rights>The Indian National Science Academy 2022. corrected publication 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-55683204308ab1e2214b32333d55949fcd872c35ed1583eefaba00dfbdac5a1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-021-00148-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-021-00148-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Mahdou, Najib</creatorcontrib><creatorcontrib>Moussaoui, Sanae</creatorcontrib><creatorcontrib>Moutui, Moutu Abdou Salam</creatorcontrib><title>When every finitely projective ideal is projective</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our work is motivated by an attempt to generate new original classes of rings possessing this property.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Original Research</subject><subject>Rings (mathematics)</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC6-jJrUmWMniDATeKy5A2p9pSO2PSGejbG62gK1fn5_Bf4CPknMElA9BXiQnOSwqcUQAmDZ0OyAKsVlTLUh1mDcxSpYw5JicpdQClAGsXhL-84VDgHuNUNO3QjthPxTZuOqzHdo9FG9D3RZv-_E7JUeP7hGc_d0meb2-eVvd0_Xj3sLpe05oDjHmsNIKDFGB8xZBzJivBhRBBKSttUwejeS0UBqaMQGx85QFCUwVfK8-CWJKLuTdPf-wwja7b7OKQJx3XoI21Uuvs4rOrjpuUIjZuG9t3HyfHwH2xcTMbl9m4bzZuyiExh1I2D68Yf6v_SX0Cebhm4w</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mahdou, Najib</creator><creator>Moussaoui, Sanae</creator><creator>Moutui, Moutu Abdou Salam</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>When every finitely projective ideal is projective</title><author>Mahdou, Najib ; Moussaoui, Sanae ; Moutui, Moutu Abdou Salam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-55683204308ab1e2214b32333d55949fcd872c35ed1583eefaba00dfbdac5a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Original Research</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdou, Najib</creatorcontrib><creatorcontrib>Moussaoui, Sanae</creatorcontrib><creatorcontrib>Moutui, Moutu Abdou Salam</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdou, Najib</au><au>Moussaoui, Sanae</au><au>Moutui, Moutu Abdou Salam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When every finitely projective ideal is projective</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>53</volume><issue>3</issue><spage>579</spage><epage>586</epage><pages>579-586</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our work is motivated by an attempt to generate new original classes of rings possessing this property.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-021-00148-y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-5588
ispartof Indian journal of pure and applied mathematics, 2022-09, Vol.53 (3), p.579-586
issn 0019-5588
0975-7465
language eng
recordid cdi_proquest_journals_2707899477
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Mathematics
Mathematics and Statistics
Numerical Analysis
Original Research
Rings (mathematics)
title When every finitely projective ideal is projective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20every%20finitely%20projective%20ideal%20is%20projective&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Mahdou,%20Najib&rft.date=2022-09-01&rft.volume=53&rft.issue=3&rft.spage=579&rft.epage=586&rft.pages=579-586&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-021-00148-y&rft_dat=%3Cproquest_cross%3E2707899477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707899477&rft_id=info:pmid/&rfr_iscdi=true