When every finitely projective ideal is projective
This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our w...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2022-09, Vol.53 (3), p.579-586 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | 3 |
container_start_page | 579 |
container_title | Indian journal of pure and applied mathematics |
container_volume | 53 |
creator | Mahdou, Najib Moussaoui, Sanae Moutui, Moutu Abdou Salam |
description | This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our work is motivated by an attempt to generate new original classes of rings possessing this property. |
doi_str_mv | 10.1007/s13226-021-00148-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707899477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707899477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-55683204308ab1e2214b32333d55949fcd872c35ed1583eefaba00dfbdac5a1d3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC6-jJrUmWMniDATeKy5A2p9pSO2PSGejbG62gK1fn5_Bf4CPknMElA9BXiQnOSwqcUQAmDZ0OyAKsVlTLUh1mDcxSpYw5JicpdQClAGsXhL-84VDgHuNUNO3QjthPxTZuOqzHdo9FG9D3RZv-_E7JUeP7hGc_d0meb2-eVvd0_Xj3sLpe05oDjHmsNIKDFGB8xZBzJivBhRBBKSttUwejeS0UBqaMQGx85QFCUwVfK8-CWJKLuTdPf-wwja7b7OKQJx3XoI21Uuvs4rOrjpuUIjZuG9t3HyfHwH2xcTMbl9m4bzZuyiExh1I2D68Yf6v_SX0Cebhm4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707899477</pqid></control><display><type>article</type><title>When every finitely projective ideal is projective</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mahdou, Najib ; Moussaoui, Sanae ; Moutui, Moutu Abdou Salam</creator><creatorcontrib>Mahdou, Najib ; Moussaoui, Sanae ; Moutui, Moutu Abdou Salam</creatorcontrib><description>This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our work is motivated by an attempt to generate new original classes of rings possessing this property.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-021-00148-y</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Original Research ; Rings (mathematics)</subject><ispartof>Indian journal of pure and applied mathematics, 2022-09, Vol.53 (3), p.579-586</ispartof><rights>The Indian National Science Academy 2022. corrected publication 2022</rights><rights>The Indian National Science Academy 2022. corrected publication 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-55683204308ab1e2214b32333d55949fcd872c35ed1583eefaba00dfbdac5a1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-021-00148-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-021-00148-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Mahdou, Najib</creatorcontrib><creatorcontrib>Moussaoui, Sanae</creatorcontrib><creatorcontrib>Moutui, Moutu Abdou Salam</creatorcontrib><title>When every finitely projective ideal is projective</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our work is motivated by an attempt to generate new original classes of rings possessing this property.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Original Research</subject><subject>Rings (mathematics)</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC6-jJrUmWMniDATeKy5A2p9pSO2PSGejbG62gK1fn5_Bf4CPknMElA9BXiQnOSwqcUQAmDZ0OyAKsVlTLUh1mDcxSpYw5JicpdQClAGsXhL-84VDgHuNUNO3QjthPxTZuOqzHdo9FG9D3RZv-_E7JUeP7hGc_d0meb2-eVvd0_Xj3sLpe05oDjHmsNIKDFGB8xZBzJivBhRBBKSttUwejeS0UBqaMQGx85QFCUwVfK8-CWJKLuTdPf-wwja7b7OKQJx3XoI21Uuvs4rOrjpuUIjZuG9t3HyfHwH2xcTMbl9m4bzZuyiExh1I2D68Yf6v_SX0Cebhm4w</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mahdou, Najib</creator><creator>Moussaoui, Sanae</creator><creator>Moutui, Moutu Abdou Salam</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>When every finitely projective ideal is projective</title><author>Mahdou, Najib ; Moussaoui, Sanae ; Moutui, Moutu Abdou Salam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-55683204308ab1e2214b32333d55949fcd872c35ed1583eefaba00dfbdac5a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Original Research</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdou, Najib</creatorcontrib><creatorcontrib>Moussaoui, Sanae</creatorcontrib><creatorcontrib>Moutui, Moutu Abdou Salam</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdou, Najib</au><au>Moussaoui, Sanae</au><au>Moutui, Moutu Abdou Salam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When every finitely projective ideal is projective</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>53</volume><issue>3</issue><spage>579</spage><epage>586</epage><pages>579-586</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our work is motivated by an attempt to generate new original classes of rings possessing this property.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-021-00148-y</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-5588 |
ispartof | Indian journal of pure and applied mathematics, 2022-09, Vol.53 (3), p.579-586 |
issn | 0019-5588 0975-7465 |
language | eng |
recordid | cdi_proquest_journals_2707899477 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Mathematics Mathematics and Statistics Numerical Analysis Original Research Rings (mathematics) |
title | When every finitely projective ideal is projective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20every%20finitely%20projective%20ideal%20is%20projective&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Mahdou,%20Najib&rft.date=2022-09-01&rft.volume=53&rft.issue=3&rft.spage=579&rft.epage=586&rft.pages=579-586&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-021-00148-y&rft_dat=%3Cproquest_cross%3E2707899477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707899477&rft_id=info:pmid/&rfr_iscdi=true |