When every finitely projective ideal is projective
This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our w...
Gespeichert in:
Veröffentlicht in: | Indian journal of pure and applied mathematics 2022-09, Vol.53 (3), p.579-586 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the class of rings in which every finitely projective ideal is projective (FPP-ring for short). We examine the transfer of this property to various context of commutative ring extensions such as direct product, homomorphic image, trivial ring extension and amalgamation ring. Our work is motivated by an attempt to generate new original classes of rings possessing this property. |
---|---|
ISSN: | 0019-5588 0975-7465 |
DOI: | 10.1007/s13226-021-00148-y |