Formation and Breakdown of Oxide Films in High-Rate Anodic Dissolution of Chromium–Nickel Steels in Electrolytes for Electrochemical Machining

It is shown that, in high-rate pulsed galvanostatic anodic dissolution of type CSN17335 and AISI 304 chromium–nickel steels in electrolytes for electrochemical machining (ECM) (chloride, nitrate, and mixed chloride–nitrate solutions with a conductivity of 0.15 S/cm) using microsecond pulses with a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface engineering and applied electrochemistry 2022-08, Vol.58 (4), p.313-322
Hauptverfasser: Dikusar, A. I., Silkin, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that, in high-rate pulsed galvanostatic anodic dissolution of type CSN17335 and AISI 304 chromium–nickel steels in electrolytes for electrochemical machining (ECM) (chloride, nitrate, and mixed chloride–nitrate solutions with a conductivity of 0.15 S/cm) using microsecond pulses with a duration of 20–2000 μs and current densities in the range of 1–100 A/cm 2 , a substantial fraction of charge (up to ~40%) is spent on the formation of a passivating oxide film with a semiconducting behavior. The electrochemical treatment therefore directly involves the oxide film, not the alloy. As a consequence, the current efficiency of ECM of these materials is ~60–70%, depending on the alloy composition. When using direct current, the rate of machining increases as a result of the oxide film breakdown due to its thermokinetic instability (“thermal explosion”) caused by a rise in the surface temperature.
ISSN:1068-3755
1934-8002
DOI:10.3103/S1068375522040056