Formation and Breakdown of Oxide Films in High-Rate Anodic Dissolution of Chromium–Nickel Steels in Electrolytes for Electrochemical Machining
It is shown that, in high-rate pulsed galvanostatic anodic dissolution of type CSN17335 and AISI 304 chromium–nickel steels in electrolytes for electrochemical machining (ECM) (chloride, nitrate, and mixed chloride–nitrate solutions with a conductivity of 0.15 S/cm) using microsecond pulses with a d...
Gespeichert in:
Veröffentlicht in: | Surface engineering and applied electrochemistry 2022-08, Vol.58 (4), p.313-322 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that, in high-rate pulsed galvanostatic anodic dissolution of type CSN17335 and AISI 304 chromium–nickel steels in electrolytes for electrochemical machining (ECM) (chloride, nitrate, and mixed chloride–nitrate solutions with a conductivity of 0.15 S/cm) using microsecond pulses with a duration of 20–2000 μs and current densities in the range of 1–100 A/cm
2
, a substantial fraction of charge (up to ~40%) is spent on the formation of a passivating oxide film with a semiconducting behavior. The electrochemical treatment therefore directly involves the oxide film, not the alloy. As a consequence, the current efficiency of ECM of these materials is ~60–70%, depending on the alloy composition. When using direct current, the rate of machining increases as a result of the oxide film breakdown due to its thermokinetic instability (“thermal explosion”) caused by a rise in the surface temperature. |
---|---|
ISSN: | 1068-3755 1934-8002 |
DOI: | 10.3103/S1068375522040056 |