Probabilistic Prediction of Dst Storms One‐Day‐Ahead Using Full‐Disk SoHO Images

We present a new model for the probability that the disturbance storm time (Dst) index exceeds −100 nT, with a lead time between 1 and 3 days. Dst provides essential information about the strength of the ring current around the Earth caused by the protons and electrons from the solar wind, and it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2022-08, Vol.20 (8), p.n/a
Hauptverfasser: Hu, A., Shneider, C., Tiwari, A., Camporeale, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new model for the probability that the disturbance storm time (Dst) index exceeds −100 nT, with a lead time between 1 and 3 days. Dst provides essential information about the strength of the ring current around the Earth caused by the protons and electrons from the solar wind, and it is routinely used as a proxy for geomagnetic storms. The model is developed using an ensemble of Convolutional Neural Networks that are trained using Solar and Heliospheric Observatory (SoHO) images (Michelson Doppler Imager, Extreme ultraviolet Imaging Telescope, and Large Angle and Spectrometric Coronagraph). The relationship between the SoHO images and the solar wind has been investigated by many researchers, but these studies have not explicitly considered using SoHO images to predict the Dst index. This work presents a novel methodology to train the individual models and to learn the optimal ensemble weights iteratively, by using a customized class‐balanced mean square error (CB‐MSE) loss function tied to a least‐squares based ensemble. The proposed model can predict the probability that Dst 
ISSN:1542-7390
1539-4964
1542-7390
DOI:10.1029/2022SW003064