A New Variant of Wilson’s Functional Equation on Monoids

We find on a monoid M the complex-valued solutions f, g : M → ℂ such that f is central and g is continuous of the functional equation f ( x σ ( y ) ) + f ( τ ( y ) x ) = 2 f ( x ) g ( y ) , x , y ∈ M , where σ : M → M is an involutive automorphism and τ : M → M is an involutive anti-automorphism. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2022-08, Vol.38 (8), p.1303-1316
Hauptverfasser: Dimou, Hajira, Elqorachi, Elhoucien, Chahbi, Abdellatif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1316
container_issue 8
container_start_page 1303
container_title Acta mathematica Sinica. English series
container_volume 38
creator Dimou, Hajira
Elqorachi, Elhoucien
Chahbi, Abdellatif
description We find on a monoid M the complex-valued solutions f, g : M → ℂ such that f is central and g is continuous of the functional equation f ( x σ ( y ) ) + f ( τ ( y ) x ) = 2 f ( x ) g ( y ) , x , y ∈ M , where σ : M → M is an involutive automorphism and τ : M → M is an involutive anti-automorphism. The solutions are described in terms of multiplicative functions, additive functions and characters of 2-dimensional representations of M .
doi_str_mv 10.1007/s10114-022-1233-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2707400306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707400306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-ad64d2143bb75c4589e1db7343b26e968fc095d6848e0716c4868882f53641513</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsFYfwFvA8-rM_o-3UloVql78c1zSZCMpNdvuJog3X8PX80nckoInYWCG4fu-GX6EnCNcIoC-igiIggJjFBnnFA7ICAXPqVaoD_ezkaiOyUmMKwApc1Ajcj3JHtxH9lKEpmi7zNfZa7OOvv35-o7ZvG_LrvFtsc5m277YjVmqe9_6poqn5Kgu1tGd7fuYPM9nT9Nbuni8uZtOFrTE3HS0qJSoWLq_XGpZCmlyh9VS87RgyuXK1CXkslJGGAcaVSmMMsawWnIlUCIfk4shdxP8tnexsyvfh_RUtEyDFgAcVFLhoCqDjzG42m5C816ET4tgd4jsgMgmRHaHyELysMETk7Z9c-Ev-X_TLw2bZuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707400306</pqid></control><display><type>article</type><title>A New Variant of Wilson’s Functional Equation on Monoids</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Dimou, Hajira ; Elqorachi, Elhoucien ; Chahbi, Abdellatif</creator><creatorcontrib>Dimou, Hajira ; Elqorachi, Elhoucien ; Chahbi, Abdellatif</creatorcontrib><description>We find on a monoid M the complex-valued solutions f, g : M → ℂ such that f is central and g is continuous of the functional equation f ( x σ ( y ) ) + f ( τ ( y ) x ) = 2 f ( x ) g ( y ) , x , y ∈ M , where σ : M → M is an involutive automorphism and τ : M → M is an involutive anti-automorphism. The solutions are described in terms of multiplicative functions, additive functions and characters of 2-dimensional representations of M .</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-022-1233-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Automorphisms ; Continuity (mathematics) ; Functional equations ; Mathematics ; Mathematics and Statistics ; Monoids</subject><ispartof>Acta mathematica Sinica. English series, 2022-08, Vol.38 (8), p.1303-1316</ispartof><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2022</rights><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-ad64d2143bb75c4589e1db7343b26e968fc095d6848e0716c4868882f53641513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-022-1233-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-022-1233-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dimou, Hajira</creatorcontrib><creatorcontrib>Elqorachi, Elhoucien</creatorcontrib><creatorcontrib>Chahbi, Abdellatif</creatorcontrib><title>A New Variant of Wilson’s Functional Equation on Monoids</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>We find on a monoid M the complex-valued solutions f, g : M → ℂ such that f is central and g is continuous of the functional equation f ( x σ ( y ) ) + f ( τ ( y ) x ) = 2 f ( x ) g ( y ) , x , y ∈ M , where σ : M → M is an involutive automorphism and τ : M → M is an involutive anti-automorphism. The solutions are described in terms of multiplicative functions, additive functions and characters of 2-dimensional representations of M .</description><subject>Automorphisms</subject><subject>Continuity (mathematics)</subject><subject>Functional equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monoids</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsFYfwFvA8-rM_o-3UloVql78c1zSZCMpNdvuJog3X8PX80nckoInYWCG4fu-GX6EnCNcIoC-igiIggJjFBnnFA7ICAXPqVaoD_ezkaiOyUmMKwApc1Ajcj3JHtxH9lKEpmi7zNfZa7OOvv35-o7ZvG_LrvFtsc5m277YjVmqe9_6poqn5Kgu1tGd7fuYPM9nT9Nbuni8uZtOFrTE3HS0qJSoWLq_XGpZCmlyh9VS87RgyuXK1CXkslJGGAcaVSmMMsawWnIlUCIfk4shdxP8tnexsyvfh_RUtEyDFgAcVFLhoCqDjzG42m5C816ET4tgd4jsgMgmRHaHyELysMETk7Z9c-Ev-X_TLw2bZuE</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Dimou, Hajira</creator><creator>Elqorachi, Elhoucien</creator><creator>Chahbi, Abdellatif</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220801</creationdate><title>A New Variant of Wilson’s Functional Equation on Monoids</title><author>Dimou, Hajira ; Elqorachi, Elhoucien ; Chahbi, Abdellatif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-ad64d2143bb75c4589e1db7343b26e968fc095d6848e0716c4868882f53641513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Continuity (mathematics)</topic><topic>Functional equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimou, Hajira</creatorcontrib><creatorcontrib>Elqorachi, Elhoucien</creatorcontrib><creatorcontrib>Chahbi, Abdellatif</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimou, Hajira</au><au>Elqorachi, Elhoucien</au><au>Chahbi, Abdellatif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Variant of Wilson’s Functional Equation on Monoids</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>38</volume><issue>8</issue><spage>1303</spage><epage>1316</epage><pages>1303-1316</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>We find on a monoid M the complex-valued solutions f, g : M → ℂ such that f is central and g is continuous of the functional equation f ( x σ ( y ) ) + f ( τ ( y ) x ) = 2 f ( x ) g ( y ) , x , y ∈ M , where σ : M → M is an involutive automorphism and τ : M → M is an involutive anti-automorphism. The solutions are described in terms of multiplicative functions, additive functions and characters of 2-dimensional representations of M .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10114-022-1233-0</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2022-08, Vol.38 (8), p.1303-1316
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_2707400306
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Automorphisms
Continuity (mathematics)
Functional equations
Mathematics
Mathematics and Statistics
Monoids
title A New Variant of Wilson’s Functional Equation on Monoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Variant%20of%20Wilson%E2%80%99s%20Functional%20Equation%20on%20Monoids&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Dimou,%20Hajira&rft.date=2022-08-01&rft.volume=38&rft.issue=8&rft.spage=1303&rft.epage=1316&rft.pages=1303-1316&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-022-1233-0&rft_dat=%3Cproquest_cross%3E2707400306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707400306&rft_id=info:pmid/&rfr_iscdi=true