A New Variant of Wilson’s Functional Equation on Monoids
We find on a monoid M the complex-valued solutions f, g : M → ℂ such that f is central and g is continuous of the functional equation f ( x σ ( y ) ) + f ( τ ( y ) x ) = 2 f ( x ) g ( y ) , x , y ∈ M , where σ : M → M is an involutive automorphism and τ : M → M is an involutive anti-automorphism. Th...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2022-08, Vol.38 (8), p.1303-1316 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We find on a monoid
M
the complex-valued solutions
f, g : M
→ ℂ such that
f
is central and
g
is continuous of the functional equation
f
(
x
σ
(
y
)
)
+
f
(
τ
(
y
)
x
)
=
2
f
(
x
)
g
(
y
)
,
x
,
y
∈
M
,
where
σ
:
M
→
M
is an involutive automorphism and
τ
:
M
→
M
is an involutive anti-automorphism. The solutions are described in terms of multiplicative functions, additive functions and characters of 2-dimensional representations of
M
. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-022-1233-0 |