A New Variant of Wilson’s Functional Equation on Monoids

We find on a monoid M the complex-valued solutions f, g : M → ℂ such that f is central and g is continuous of the functional equation f ( x σ ( y ) ) + f ( τ ( y ) x ) = 2 f ( x ) g ( y ) , x , y ∈ M , where σ : M → M is an involutive automorphism and τ : M → M is an involutive anti-automorphism. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2022-08, Vol.38 (8), p.1303-1316
Hauptverfasser: Dimou, Hajira, Elqorachi, Elhoucien, Chahbi, Abdellatif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We find on a monoid M the complex-valued solutions f, g : M → ℂ such that f is central and g is continuous of the functional equation f ( x σ ( y ) ) + f ( τ ( y ) x ) = 2 f ( x ) g ( y ) , x , y ∈ M , where σ : M → M is an involutive automorphism and τ : M → M is an involutive anti-automorphism. The solutions are described in terms of multiplicative functions, additive functions and characters of 2-dimensional representations of M .
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-022-1233-0