Optimization of chiller sequencing control for district cooling system at the Hong Kong-Zhuhai-Macao Bridge Hong Kong Port

To mitigate the climate change issue, the Government of the Hong Kong Special Administrative Region (HKSAR) proposed the “Hong Kong Climate Change Plan 2030+” with an ambitious goal of reducing the carbon intensity to 65%–70% below 2005 levels by 2030. To achieve this target, the HKSAR Government ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building services engineering research & technology 2022-09, Vol.43 (5), p.645-664
Hauptverfasser: Kerrick Law, Tin Chung, Wong, Pui Kei Calvin, Ng, Kar Wai Gordon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To mitigate the climate change issue, the Government of the Hong Kong Special Administrative Region (HKSAR) proposed the “Hong Kong Climate Change Plan 2030+” with an ambitious goal of reducing the carbon intensity to 65%–70% below 2005 levels by 2030. To achieve this target, the HKSAR Government has developed two District Cooling Systems (DCS) to promote the use of district energy system, enhancing the overall energy efficiency for cooling purpose. One of the government-owned DCSs is located at the Hong Kong-Zhuhai-Macao Bridge Hong Kong Port (HZMB-HKP), producing a total design cooling capacity of 24.16 MW to passenger clearance building and ancillary buildings there. This paper demonstrates how the DCS at HZMB-HKP could enhance overall energy efficiency for cooling purpose, through proper chiller sequencing control, and reduce CO2 emission significantly. An optimal seasonal chiller operation mode is also suggested to be adopted at the DCS at HZMB-HKP from cost-effectiveness perspective. Practical application: District Cooling Systems are considered as a promising solution to alleviate the climate change issue. An optimized chiller sequencing control strategy of DCS can effectively reduce overall cooling energy consumption, so as to achieve carbon neutrality. This paper outlines a case study on a cost-effective operational control strategy of the DCS at HZMB-HKP. The analysis of both the theoretical and practical sequencing control strategy can be taken as a reference for DCS development in the future.
ISSN:0143-6244
1477-0849
DOI:10.1177/01436244221088778