A Low Detent Force DS-PMSLM Based on the Modulation of Cogging and End Forces

This article presents a low detent force double-sided permanent-magnet synchronous linear motor (DS-PMSLM), which contains two flat-type stators and a mover. The mover is constituted of a fiberglass support plate and Halbach array permanent magnets attached on both surfaces of this plate, which prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2023-01, Vol.70 (1), p.721-730
Hauptverfasser: Zhang, Chi, Chen, Feixue, Qiu, Shuheng, Pei, Tianyou, Gao, Weiwei, Chen, Jinhua, Zhang, Jie, Yang, Guilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents a low detent force double-sided permanent-magnet synchronous linear motor (DS-PMSLM), which contains two flat-type stators and a mover. The mover is constituted of a fiberglass support plate and Halbach array permanent magnets attached on both surfaces of this plate, which provides a large thrust force and low mover mass for high dynamic response. For the sake of reducing the thrust ripple, a modulation method of the cogging and end forces is proposed based on the destructive interference. The even-order harmonics in cogging and end forces are reduced by adjusting the width of the side slots and the lengths of end teeth, respectively. In order to reduce the odd-order harmonics of the detent force, the cogging force and end force are modulated to reverse phases and identical amplitudes by changing the equivalent lengths of four end teeth. An integrated subdomain analytical model considering the cogging and end effects is built to optimize five structural parameters of the stators for low detent force. Finally, the prototype and testing platforms are set up and the experimental results validate that the proposed DS-PMSLM can achieve a low thrust ripple of less than 1.5 \%.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2022.3153799