Labeled Trees Generating Complete, Compact, and Discrete Ultrametric Spaces
We investigate the interrelations between labeled trees and ultrametric spaces generated by these trees. The labeled trees, which generate complete ultrametrics, totally bounded ultrametrics, and discrete ones, are characterized up to isomorphism. As corollary, we obtain a characterization of labele...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2022-09, Vol.26 (3), p.613-642 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 642 |
---|---|
container_issue | 3 |
container_start_page | 613 |
container_title | Annals of combinatorics |
container_volume | 26 |
creator | Dovgoshey, Oleksiy Küçükaslan, Mehmet |
description | We investigate the interrelations between labeled trees and ultrametric spaces generated by these trees. The labeled trees, which generate complete ultrametrics, totally bounded ultrametrics, and discrete ones, are characterized up to isomorphism. As corollary, we obtain a characterization of labeled trees generating compact ultrametrics and discrete totally bounded ultrametrics. It is also shown that every ultrametric space generated by labeled tree contains a dense discrete subspace. |
doi_str_mv | 10.1007/s00026-022-00581-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2706755326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706755326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e3370926a3e1384a99b79bd8c8494728becbec757cea7fc64522f264a750fe453</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgffwBTwGvjU4eu0mOUrWKBQ-255BNZ8uW7W5Ntgf_vbEreBMG5mO-x8BHyA2HOw6g7xMAiJKBEAygMJyZEzIBwS2TYNXpEZtMQXlOLlLaZqRBigl5W_gKW1zTZURMdI4dRj803YbO-t2-xQGnR-TDMKW-W9PHJoWYz3TVDtHvcIhNoB-Zx3RFzmrfJrz-3Zdk9fy0nL2wxfv8dfawYEFyOzCUUoMVpZfIpVHe2krbam2CUVZpYSoMeXShA3pdh1IVQtSiVF4XUKMq5CW5HXP3sf88YBrctj_ELr90QkOpi0KKMqvEqAqxTyli7fax2fn45Ti4n9LcWJrLpbljac5kkxxNKYu7Dca_6H9c3zg-bfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706755326</pqid></control><display><type>article</type><title>Labeled Trees Generating Complete, Compact, and Discrete Ultrametric Spaces</title><source>SpringerNature Journals</source><creator>Dovgoshey, Oleksiy ; Küçükaslan, Mehmet</creator><creatorcontrib>Dovgoshey, Oleksiy ; Küçükaslan, Mehmet</creatorcontrib><description>We investigate the interrelations between labeled trees and ultrametric spaces generated by these trees. The labeled trees, which generate complete ultrametrics, totally bounded ultrametrics, and discrete ones, are characterized up to isomorphism. As corollary, we obtain a characterization of labeled trees generating compact ultrametrics and discrete totally bounded ultrametrics. It is also shown that every ultrametric space generated by labeled tree contains a dense discrete subspace.</description><identifier>ISSN: 0218-0006</identifier><identifier>EISSN: 0219-3094</identifier><identifier>DOI: 10.1007/s00026-022-00581-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Combinatorics ; Isomorphism ; Mathematics ; Mathematics and Statistics</subject><ispartof>Annals of combinatorics, 2022-09, Vol.26 (3), p.613-642</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e3370926a3e1384a99b79bd8c8494728becbec757cea7fc64522f264a750fe453</citedby><cites>FETCH-LOGICAL-c319t-e3370926a3e1384a99b79bd8c8494728becbec757cea7fc64522f264a750fe453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00026-022-00581-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00026-022-00581-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dovgoshey, Oleksiy</creatorcontrib><creatorcontrib>Küçükaslan, Mehmet</creatorcontrib><title>Labeled Trees Generating Complete, Compact, and Discrete Ultrametric Spaces</title><title>Annals of combinatorics</title><addtitle>Ann. Comb</addtitle><description>We investigate the interrelations between labeled trees and ultrametric spaces generated by these trees. The labeled trees, which generate complete ultrametrics, totally bounded ultrametrics, and discrete ones, are characterized up to isomorphism. As corollary, we obtain a characterization of labeled trees generating compact ultrametrics and discrete totally bounded ultrametrics. It is also shown that every ultrametric space generated by labeled tree contains a dense discrete subspace.</description><subject>Combinatorics</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0218-0006</issn><issn>0219-3094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLAzEQDqJgffwBTwGvjU4eu0mOUrWKBQ-255BNZ8uW7W5Ntgf_vbEreBMG5mO-x8BHyA2HOw6g7xMAiJKBEAygMJyZEzIBwS2TYNXpEZtMQXlOLlLaZqRBigl5W_gKW1zTZURMdI4dRj803YbO-t2-xQGnR-TDMKW-W9PHJoWYz3TVDtHvcIhNoB-Zx3RFzmrfJrz-3Zdk9fy0nL2wxfv8dfawYEFyOzCUUoMVpZfIpVHe2krbam2CUVZpYSoMeXShA3pdh1IVQtSiVF4XUKMq5CW5HXP3sf88YBrctj_ELr90QkOpi0KKMqvEqAqxTyli7fax2fn45Ti4n9LcWJrLpbljac5kkxxNKYu7Dca_6H9c3zg-bfc</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Dovgoshey, Oleksiy</creator><creator>Küçükaslan, Mehmet</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Labeled Trees Generating Complete, Compact, and Discrete Ultrametric Spaces</title><author>Dovgoshey, Oleksiy ; Küçükaslan, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e3370926a3e1384a99b79bd8c8494728becbec757cea7fc64522f264a750fe453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorics</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dovgoshey, Oleksiy</creatorcontrib><creatorcontrib>Küçükaslan, Mehmet</creatorcontrib><collection>CrossRef</collection><jtitle>Annals of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dovgoshey, Oleksiy</au><au>Küçükaslan, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Labeled Trees Generating Complete, Compact, and Discrete Ultrametric Spaces</atitle><jtitle>Annals of combinatorics</jtitle><stitle>Ann. Comb</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>613</spage><epage>642</epage><pages>613-642</pages><issn>0218-0006</issn><eissn>0219-3094</eissn><abstract>We investigate the interrelations between labeled trees and ultrametric spaces generated by these trees. The labeled trees, which generate complete ultrametrics, totally bounded ultrametrics, and discrete ones, are characterized up to isomorphism. As corollary, we obtain a characterization of labeled trees generating compact ultrametrics and discrete totally bounded ultrametrics. It is also shown that every ultrametric space generated by labeled tree contains a dense discrete subspace.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00026-022-00581-8</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0218-0006 |
ispartof | Annals of combinatorics, 2022-09, Vol.26 (3), p.613-642 |
issn | 0218-0006 0219-3094 |
language | eng |
recordid | cdi_proquest_journals_2706755326 |
source | SpringerNature Journals |
subjects | Combinatorics Isomorphism Mathematics Mathematics and Statistics |
title | Labeled Trees Generating Complete, Compact, and Discrete Ultrametric Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Labeled%20Trees%20Generating%20Complete,%20Compact,%20and%20Discrete%20Ultrametric%20Spaces&rft.jtitle=Annals%20of%20combinatorics&rft.au=Dovgoshey,%20Oleksiy&rft.date=2022-09-01&rft.volume=26&rft.issue=3&rft.spage=613&rft.epage=642&rft.pages=613-642&rft.issn=0218-0006&rft.eissn=0219-3094&rft_id=info:doi/10.1007/s00026-022-00581-8&rft_dat=%3Cproquest_cross%3E2706755326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706755326&rft_id=info:pmid/&rfr_iscdi=true |