Labeled Trees Generating Complete, Compact, and Discrete Ultrametric Spaces
We investigate the interrelations between labeled trees and ultrametric spaces generated by these trees. The labeled trees, which generate complete ultrametrics, totally bounded ultrametrics, and discrete ones, are characterized up to isomorphism. As corollary, we obtain a characterization of labele...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2022-09, Vol.26 (3), p.613-642 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the interrelations between labeled trees and ultrametric spaces generated by these trees. The labeled trees, which generate complete ultrametrics, totally bounded ultrametrics, and discrete ones, are characterized up to isomorphism. As corollary, we obtain a characterization of labeled trees generating compact ultrametrics and discrete totally bounded ultrametrics. It is also shown that every ultrametric space generated by labeled tree contains a dense discrete subspace. |
---|---|
ISSN: | 0218-0006 0219-3094 |
DOI: | 10.1007/s00026-022-00581-8 |