Generalization of Proximate Order and Applications

We introduce a concept of a quasi proximate order which is a generalization of a proximate order and allows us to study efficiently analytic functions whose order and lower order of growth are different. We prove an existence theorem for a quasi proximate order, i.e. a counterpart of Valiron’s theor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory 2022-09, Vol.22 (3), p.445-470
Hauptverfasser: Chyzhykov, Igor, Filevych, Petro, Rättyä, Jouni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a concept of a quasi proximate order which is a generalization of a proximate order and allows us to study efficiently analytic functions whose order and lower order of growth are different. We prove an existence theorem for a quasi proximate order, i.e. a counterpart of Valiron’s theorem for a proximate order. As applications, we generalize and complement some results of M. Cartwright and C. N. Linden on asymptotic behavior of analytic functions in the unit disc.
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-021-00411-7