Generalization of Proximate Order and Applications
We introduce a concept of a quasi proximate order which is a generalization of a proximate order and allows us to study efficiently analytic functions whose order and lower order of growth are different. We prove an existence theorem for a quasi proximate order, i.e. a counterpart of Valiron’s theor...
Gespeichert in:
Veröffentlicht in: | Computational methods and function theory 2022-09, Vol.22 (3), p.445-470 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a concept of a quasi proximate order which is a generalization of a proximate order and allows us to study efficiently analytic functions whose order and lower order of growth are different. We prove an existence theorem for a quasi proximate order, i.e. a counterpart of Valiron’s theorem for a proximate order. As applications, we generalize and complement some results of M. Cartwright and C. N. Linden on asymptotic behavior of analytic functions in the unit disc. |
---|---|
ISSN: | 1617-9447 2195-3724 |
DOI: | 10.1007/s40315-021-00411-7 |