On existence and concentration of solutions for Hamiltonian systems involving fractional operator with critical exponential growth

This paper is concerned with the existence and concentration of ground state solutions for the following class of fractional Schrödinger system (−Δ)1/2u+(λa(x)+1)u=Hv(u,v)inR,u,v∈H1/2(R),(−Δ)1/2v+(λa(x)+1)v=Hu(u,v)inR,u,v∈H1/2(R),\begin{align*} \hspace*{44pt}(-\Delta )^{1/2}u + (\lambda a(x) + 1)u=...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2022-08, Vol.295 (8), p.1480-1512
Hauptverfasser: Costa, Augusto C. R., Maia, Bráulio B. V., Miyagaki, Olímpio H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the existence and concentration of ground state solutions for the following class of fractional Schrödinger system (−Δ)1/2u+(λa(x)+1)u=Hv(u,v)inR,u,v∈H1/2(R),(−Δ)1/2v+(λa(x)+1)v=Hu(u,v)inR,u,v∈H1/2(R),\begin{align*} \hspace*{44pt}(-\Delta )^{1/2}u + (\lambda a(x) + 1)u= H_{v}(u,v) \text{ in } \mathbb {R}, \ \ u,v \in H^{1/2}(\mathbb {R}), \hspace*{-44pt}\\ \hspace*{44pt}(-\Delta )^{1/2}v + (\lambda a(x) + 1)v= H_{u}(u,v) \text{ in } \mathbb {R} , \ \ u,v \in H^{1/2}(\mathbb {R}),\hspace*{-44pt} \end{align*}where H has exponential critical growth, λ is a positive parameter and a(x)$a(x)$ has a potential well with int(a−1(0))${\mathrm{int}}\big (a^{-1}(0 ) \big )$ consisting of k disjoint components Ω1,⋯,Ωk$\Omega _{1}, \dots , \Omega _{k}$. The proof relies on variational methods and combines truncation arguments and the Moser iteration technique.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201900397