On existence and concentration of solutions for Hamiltonian systems involving fractional operator with critical exponential growth
This paper is concerned with the existence and concentration of ground state solutions for the following class of fractional Schrödinger system (−Δ)1/2u+(λa(x)+1)u=Hv(u,v)inR,u,v∈H1/2(R),(−Δ)1/2v+(λa(x)+1)v=Hu(u,v)inR,u,v∈H1/2(R),\begin{align*} \hspace*{44pt}(-\Delta )^{1/2}u + (\lambda a(x) + 1)u=...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2022-08, Vol.295 (8), p.1480-1512 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the existence and concentration of ground state solutions for the following class of fractional Schrödinger system
(−Δ)1/2u+(λa(x)+1)u=Hv(u,v)inR,u,v∈H1/2(R),(−Δ)1/2v+(λa(x)+1)v=Hu(u,v)inR,u,v∈H1/2(R),\begin{align*} \hspace*{44pt}(-\Delta )^{1/2}u + (\lambda a(x) + 1)u= H_{v}(u,v) \text{ in } \mathbb {R}, \ \ u,v \in H^{1/2}(\mathbb {R}), \hspace*{-44pt}\\ \hspace*{44pt}(-\Delta )^{1/2}v + (\lambda a(x) + 1)v= H_{u}(u,v) \text{ in } \mathbb {R} , \ \ u,v \in H^{1/2}(\mathbb {R}),\hspace*{-44pt} \end{align*}where H has exponential critical growth, λ is a positive parameter and a(x)$a(x)$ has a potential well with int(a−1(0))${\mathrm{int}}\big (a^{-1}(0 ) \big )$ consisting of k disjoint components Ω1,⋯,Ωk$\Omega _{1}, \dots , \Omega _{k}$. The proof relies on variational methods and combines truncation arguments and the Moser iteration technique. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201900397 |