Blow‐up regions for a class of fractional evolution equations with smoothed quadratic nonlinearities

We consider an n‐dimensional parabolic‐type PDE with a diffusion given by a fractional Laplace operator and with a quadratic nonlinearity of the “gradient” of the solution, convoluted with a term b$\mathfrak {b}$ which can be singular. Our first result is the well‐posedness for this problem: We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2022-08, Vol.295 (8), p.1462-1479
Hauptverfasser: Chamorro, Diego, Issoglio, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an n‐dimensional parabolic‐type PDE with a diffusion given by a fractional Laplace operator and with a quadratic nonlinearity of the “gradient” of the solution, convoluted with a term b$\mathfrak {b}$ which can be singular. Our first result is the well‐posedness for this problem: We show existence and uniqueness of a (local in time) mild solution. The main result is about blow‐up of said solution, and in particular we find sufficient conditions on the initial datum and on the term b$\mathfrak {b}$ to ensure blow‐up of the solution in finite time.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202000480