Blow‐up regions for a class of fractional evolution equations with smoothed quadratic nonlinearities
We consider an n‐dimensional parabolic‐type PDE with a diffusion given by a fractional Laplace operator and with a quadratic nonlinearity of the “gradient” of the solution, convoluted with a term b$\mathfrak {b}$ which can be singular. Our first result is the well‐posedness for this problem: We show...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2022-08, Vol.295 (8), p.1462-1479 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an n‐dimensional parabolic‐type PDE with a diffusion given by a fractional Laplace operator and with a quadratic nonlinearity of the “gradient” of the solution, convoluted with a term b$\mathfrak {b}$ which can be singular. Our first result is the well‐posedness for this problem: We show existence and uniqueness of a (local in time) mild solution. The main result is about blow‐up of said solution, and in particular we find sufficient conditions on the initial datum and on the term b$\mathfrak {b}$ to ensure blow‐up of the solution in finite time. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202000480 |