Analysis of point-contact models of the bounce of a hard spinning ball on a compliant frictional surface

Inspired by the turf-ball interaction in golf, this paper seeks to understand the bounce of a ball that can be modelled as a rigid sphere and the surface as supplying an elasto-plastic contact force in addition to Coulomb friction. A general formulation is proposed that models the finite time interv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-08
Hauptverfasser: Biber, Stanisław W, Champneys, Alan R, Szalai, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inspired by the turf-ball interaction in golf, this paper seeks to understand the bounce of a ball that can be modelled as a rigid sphere and the surface as supplying an elasto-plastic contact force in addition to Coulomb friction. A general formulation is proposed that models the finite time interval of bounce from touch-down to lift-off. Key to the analysis is understanding transitions between slip and roll during the bounce. Starting from the rigid-body limit with a an energetic or Poisson coefficient of restitution, it is shown that slip reversal during the contact phase cannot be captured in this case, which result generalises to the case of pure normal compliance. Yet, the introduction of linear tangential stiffness and damping, does enable slip reversal. This result is extended to general weakly nonlinear normal and tangential compliance. An analysis using Filippov theory of piecewise-smooth systems leads to an argument in a natural limit that lift-off while rolling is non-generic and that almost all trajectories that lift off, do so under slip conditions. Moreover, there is a codimension-one surface in the space of incoming velocity and spin which divides balls that lift off with backspin from those that lift off with topspin. The results are compared with recent experimental measurements on golf ball bounce and the theory is shown to capture the main features of the data.
ISSN:2331-8422